Holomorphic factorization of determinants of Laplacians using quasi-Fuchsian uniformization
dc.contributor.author | McIntyre, Andrew | |
dc.contributor.author | Teo, Lee-Peng | |
dc.date.accessioned | 2016-12-09T18:45:42Z | |
dc.date.available | 2016-12-09T18:45:42Z | |
dc.date.issued | 2006 | |
dc.description.abstract | For a quasi-Fuchsian group Γ with ordinary set Ω, and Δ_n the Laplacian on n-differentials on Γ\Ω, we define a notion of a Bers dual basis ϕ_1,…,ϕ_2_d for ker Δ_n. We prove that det Δ_n/det⟨ϕ_j,ϕ_k⟩, is, up to an anomaly computed by Takhtajan and the second author in (Commun. Math Phys 239(1-2):183–240, 2003), the modulus squared of a holomorphic function F(n), where F(n) is a quasi-Fuchsian analogue of the Selberg zeta function Z(n). This generalizes the D’Hoker–Phong formula det Δ_n=c_g,_nZ(n), and is a quasi-Fuchsian counterpart of the result for Schottky groups proved by Takhtajan and the first author in Analysis 16, 1291–1323, 2006. | en_US |
dc.identifier.citation | McIntyre, Andrew; Teo, Lee-Peng. Holomorphic factorization of determinants of Laplacians using quasi-Fuchsian uniformization. Letters in Mathematical Physics January 2008, Volume 83, Issue 1, pp 41–58. doi 10.1007/s11005-007-0204-9 | en_US |
dc.identifier.uri | http://hdl.handle.net/11209/10686 | |
dc.language.iso | en | en_US |
dc.publisher | Springer Verlag | en_US |
dc.subject | Holomorphic factorization | en_US |
dc.subject | Laplacian | en_US |
dc.subject | Period matrix | en_US |
dc.subject | Differentials | en_US |
dc.subject | Quasi-Fuchsian | en_US |
dc.title | Holomorphic factorization of determinants of Laplacians using quasi-Fuchsian uniformization | en_US |
dc.type | Article | en_US |
Files
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- 2006MayMcIntyreHolomorphic
- Size:
- 246.14 KB
- Format:
- Unknown data format
- Description: