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TAU FUNCTION AND CHERN-SIMONS INVARIANT

ANDREW MCINTYRE AND JINSUNG PARK

ABSTRACT. We define a Chern-Simons invariant for a certain class of infinite volume hyper-
bolic 3-manifolds. We then prove an expression relating the Bergman tau function on a cover
of the Hurwitz space, to the lifting of the function F' defined by Zograf on Teichmiiller space,
and another holomorphic function on the cover of the Hurwitz space which we introduce.
If the point in cover of the Hurwitz space corresponds to a Riemann surface X, then this
function is constructed from the renormalized volume and our Chern-Simons invariant for
the bounding 3-manifold of X given by Schottky uniformization, together with a regularized
Polyakov integral relating determinants of Laplacians on X in the hyperbolic and singular
flat metrics. Combining this with a result of Kokotov and Korotkin, we obtain a similar ex-
pression for the isomonodromic tau function of Dubrovin. We also obtain a relation between
the Chern-Simons invariant and the eta invariant of the bounding 3-manifold, with defect
given by the phase of the Bergman tau function of X.

1. INTRODUCTION

Let 9, be the moduli space of compact Riemann surfaces of genus g, and let T, be the
corresponding Teichmiiller space of marked surfaces. Let Hy,(ki,...,k¢) be the Hurwitz
space of equivalence classes [\ : X — (C]P’l] of degree n holomorphic maps from a compact
Riemann surface X to the Riemann sphere with ramification index (ki,...,k¢) at infinity,
and all ramification points being simple. Equipping X with a marking—a choice of standard
generators of 71 (X )—gives a covering space Hy (k1 ..., k), in the same way that one obtains
the covering T, of M,. We will also be concerned with a space Hy(k1,...,kn), whose fiber
over a point in M, is the space of holomorphic 1-forms on the corresponding Riemann surface
with zeroes of order k1, ..., ky,, and we write 7:[g(k1, ..., k) for the corresponding fiber space
over T,. (See Section 2l for precise definitions.)

In [7], Kokotov and Korotkin introduced the object 7p, referred to as the Bergman tau
function, with the property that 7']234 is a globally well-defined holomorphic function on
Hy (k1. .. ke). In [I0], they defined 75 in the same way for Hy(ki,...,kp), such that
7'%4 is a globally well-defined holomorphic function on 7:[g(l<:1, ooy k).

The main result of this paper is the following theorem.

Theorem 1.1. QOver ﬁg,n(l, ..., 1), g > 1, we have the following equality:
1

(1.1) T3 = ¢ exp <47T(CS + —I> F2,
0

The same equality holds for the function T3 on Hy(1,...,1), g > 1.

Here c represents a constant, depending on g, n, and a topological choice that will be
explained in Section 8 The complex-valued function CS on Hg,(1,...,1) or Hy(1,...,1) is
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defined as follows. Each marked compact Riemann surface X has a Schottky uniformization
given by a unique marked normalized Schottky group I'; the group naturally defines an infinite
volume hyperbolic 3-manifold Mx whose conformal boundary is X. A 1-form ¥ on X (here
V¥ is either d\ for the meromorphic function A, or it is the holomorphic 1-form @) determines
a singular framing on X, and there exists a singular framing sy on Mx which extends the
framing on X in a sense we prescribe. In Section @] we define an invariant CS(M, s) for a
certain class of 3-manifolds M and singular framings s on M. The value of CS at a point
corresponding to (X, V) is then defined to equal CS(Mx,sy). Our definition of CS(M, s)
is motivated by the work of Meyerhoff [16] and Yoshida [I8] for finite volume hyperbolic
3-manifolds with cusps. In subsection we show

(1.2) CS(M, 5) = 5 W(M) + 2iCS(M, ),

where W(M) is the renormalized volume of M (see [12], [17], [13]; we use the definition
of Section 8 of [13]), and C'S(M,s) is the integral of the usual Chern-Simons 3-form over
M with the framing s, together with a correction term corresponding to the singularities
of the framing. Let us remark that C'S(M,s) is finite by our construction without any
renormalization process and is well defined only up to %Z.

The function [ is real-valued, and is given by an explicit integral over the Riemann surface,
involving the 1-form W. We refer to I as a regularized Polyakov integral, since it plays the role
of the usual Polyakov integral in relating the determinant of the Laplacian in the hyperbolic
metric on X to that in the flat singular metric on X defined by ¥, as we show in Corollary [[.4]
Its precise definition is given in (6.I) and ([@4). The combined expression exp(4rCS+11) gives
a holomorphic function over ]:Ig,n(l, ...,1) or 7:19(1, ..., 1) (although by itself, I is actually
a function over Hy,(1,...,1) or Hy(1,...,1)). The function F is the holomorphic function
over T, defined by Zograf in [19] (it is related to determinants of Laplacians—see below).

Theorem [LT] allows us to interpret the Bergman tau function as a higher genus gener-
alization of the Dedekind eta function. When g = 1, it is known that 73 = 7(7)? and
F=T1I_,(1—¢™)?on Hy ~ Ty x C* where ¢ = ¢*™, 7 € H?> ~ T, and by elementary
computation we have CS = iT and I = 0. Consequently in this case, Theorem [L.T] reduces to
the 48-th power of the defining equation of the Dedekind eta function

n(r) =g [T —q™).
m=1

In [9], [10], it was shown that 72! satisfies a modular property with respect to the mapping
class group, which reduces to the modular property of 7® in genus 1. Further, the function
F was shown in [20] (see also [I5]) to have an infinite product expansion on a subset of T:

(1.3) F=T]TI-an.

{r}m=1

Here the first product runs over all primitive closed geodesics v in Mx, and the complex
number ¢, has modulus e~length(v) and argument given by the holonomy around ~ in an
orthogonal plane. The equation (3]) is valid whenever the exponent of convergence § of T is
strictly less than 1.

The relation between objects on the 2-manifold X and the bounding infinite volume 3-
manifold My given by Theorem [I.1] fits well with principle of “holography”—for example,
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see [14] and [I7]. In this context, the Schottky uniformization provides a natural choice of
bounding 3-manifold Mx.

In [§], Kokotov and Korotkin showed that the Bergman tau function 75 is related to the
isomonodromic tau function 7; for ﬁgm(k‘l, ..., ky) considered as an underlying space of a
Frobenius manifold in the sense of Dubrovin in [3], [4], by the equation 75 = 7, 2 This
implies the corollary

Corollary 1.2. OQOwver ﬁgm(l, ..., 1), g > 1, we have the following equality:

(1.4) 8 = cexp ( —4nCS — %I) F~2,

Here and below, as in Theorem [[LT], ¢ represents a constant depending on g, n, and possibly
a topological choice. However, it does not always represent the same constant.

To state the second corollary of Theorem [T we need a result about the phase of F.
In [6], it is shown that the eta invariant of the odd signature operator over My is well-
defined, without any additional renormalization, and it is proved that the phase of F' at X is
exp(—%in(M x)), whenever the marked Schottky group I' has exponent of convergence 6 < 1.
We refer to [6] for more details. Combining this with (L.1]), we have

Corollary 1.3. The following equality holds

24
em%8MCS—HMn>:c<TB>

751

over the subset of ﬁg,n(l, .oy 1) or 7:[g(1, ..., 1), g > 1, for which the corresponding marked
Schottky group I' has exponent of convergence § < 1.

Let us remark that exp(4miCS(M)) = exp(6min(M)) for any closed 3-manifold M. Hence
Corollary [[.3] generalizes this equality for Schottky hyperbolic 3-manifolds, where the bound-
ary Riemann surface X produces a defect term given by the phase of 7.

The quantities in the main theorem are related to regularized determinants of Laplacians.
In [I9] (see also [15]), it was shown that

detAhyp
Apyp det(®;, D)

where Ayy, is the Laplacian in the unique metric of constant curvature —1 on X, Ay, is
the area of X in that metric, {®1,...,®,} is a basis of holomorphic 1-forms normalized with
respect to the marking, and S is the real valued classical Liouville action functional over ¥,.
Note that this is distinct from the usual expression of detAyy, in terms of the Selberg zeta
function; in particular, F' is holomorphic in moduli. It is known that S(X) = —4W (Mx),
when My is related to X as above (see [12], [17], [13]). In [10], Kokotov and Korotkin showed
that

1
= cexp (— MS)]FIQ over T,

detAﬂat ~
1,...,1
cAﬂat det(D,,37) over Hgy(1,...,1)

where Ag,; is the Laplacian in the flat (singular) metric defined by ®, and Ag,; is the area
of X in that metric. Combining these, we have

(1.5) g2 =

detAﬂat' Ahyp >12|F|24

4
1.6 24— -W
(1.6) 75 cexp (7T ) < Agat detAyyp

over Hy(1,...,1).
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Observing that 724! and F?* in (L8] are holomorphic functions over 7:[g(1, ..., 1), it is natural
to expect that there might exist a holomorphic function over H,(1,...,1) whose modulus is

exp (%W) ( % - C‘?ZY:YP )12. One motivation for this work was to find such a holomorphic

function, and Theorem [[T] gives an answer to this question. Combining Theorem [Tl and
(L4), and using the fact that I descends to H4(1,...,1), we have the following Polyakov
formula,

Corollary 1.4.

detAﬂat Ahyp
Afat detAhyp

1
= c exp (EI) over Hy(1,...,1),g>1.

Note that the usual argument proving the Polyakov formula for two smooth metrics does
not apply in our case, since the domains of Ag,; and Ayy, are different. Let us also remark
that this formula can be proved combining the results in [7] and [10].

We have restricted attention to ﬁg,n(l, ...,1) and 7—19(1, ..., 1) for simplicity, but we ex-
pect the results above will hold for other ]flg,n(kl, ..., kg) and 7:[g(k1, ...y k), with only minor
adjustments in the definitions of CS and I and slight changes in the proofs. We also note in
passing that our constructions of CS(M, s) and I(X, ¥) can be extended in a straightforward
way to apply when M is any convex co-compact hyperbolic 3-manifold with conformal bound-
ary X. In this case we expect that our methods will show that exp(47CS + %I ) is locally
a holomorphic function on the associated deformation space. This is a parallel of Yoshida’s
result in [I8] for finite volume hyperbolic manifolds with cusps, where I is a new “defect”
term coming from the boundary of genus g > 1.

In Section 2 we give the necessary background and make precise definitions. In Sections [3]
through [§, for simplicity of exposition, we present the proof of Theorem [[LTlover H,4(1,...,1)
only. In the last Section, we describe the necessary modifications to establish Theorem [Tl
over Hy,(1,...,1).

Acknowledgments We are grateful to Leon Takhtajan for his helpful comments and
questions for the early version of this paper. We are also thankful to Aleksey Kokotov and
Dmitry Korotkin for useful discussions about their works on the Bergman tau function. The
work of the second author is partially supported by the SRC-GaiA.

2. PRELIMINARY BACKGROUND

2.1. Hurwitz spaces and Tau functions. Let H,,(ki,...,k¢) be the Hurwitz space of
equivalence classes [\ : X — CP!] of n-fold branched coverings
A X — CP!

where X is a compact Riemann surface of genus g and the holomorphic map A of degree n
satisfies the following conditions:

i) the map A has m simple ramification points pi,...,p, € X with distinct finite images
M,..., Am € C C CP!,
ii) the preimage A~!(co) consists of £ points: A~'(c0) = {q1,...,q,} and the ramification

index of the map A at the point g; is k; for 1 < j < /.
Here two branched coverings A : X — CP! and ) : X’ — CP! are equivalent if there exists
a biholomorphic map f : X — X’ such that N o f = A. Note that n = ki + -+ + ky
and m = 2g — 2 + n + £ by the Riemann-Hurwitz formula. We also introduce the covering
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]flg,n(kl, ..., kg) of the space Hy n(ki,...,k¢) consisting of pairs
(N X = CP'{a;,bi | 1<i<g})

where [\ : X — CP'] € H,,(k1,...,k;) and {a;,b; | 1 <i < g} denotes a Torelli marking on
X, that is, a canonical basis of Hy(X,Z). The space H gn(k1,... k) is a connected complex
manifold of dimension m = 2g — 2 + n + £, and the local coordinates on this manifold are
given by the finite critical values of the map A, that is, A\q,..., \.

In [8], [10], the Bergman tau function 75 over Hy,(k1,...,k¢) is defined in terms of the
Bergman kernel. The Bergman kernel on a Riemann surface X with a Torelli marking is
defined by B(p, q) := d,dglog E(p, q) for p,q € X where E(p, q) is the prime form on X. Near
the diagonal p = ¢, the Bergman kernel B(p, ¢) has the expression

B(2(p), 2(q)) = ( (2(p) — 2(0)) > + H(2(p), 2(q)) ) d=(p)d=(q)

where z(p), z(q) are local coordinates of points p,q in X, and the Bergman projective con-
nection Rp is defined in a local coordinate by

21) Ra(:(p)) = 6 lim H(:(p). 2(0))

The meromorphic function A also defines a projective connection Rgy, which is defined in a
local coordinate to be S(\), where S is the Schwarzian derivative defined by

on-()-4()

Now the Bergman tau function 75 over ]flg,n(kl, ..., k) is locally defined to be a holomorphic
solution of the system of compatible equations

dlogtp /- Rp — Ry
oN 127r s

where s; is a small circle around the ramification point p; € X, in a local coordinate z near p;.
Note that the difference Rg — R4y is a meromorphic quadratic differential and RB%ZR‘“ dz is a

dz for i=1,...,m,
si

meromorphic 1-form. Tt follows from [9] that 72* is globally well-defined on Hy (k1. . ., k¢).
The Bergman tau function 73 is related to the isomonodromic tau function 77 of Dubrovin
[3], [4] by a theorem of Kokotov and Korotkin [8]:

Theorem 2.1.
B = TI_2 over Hgpn(ki,..., ke).

Here H, gn(k1,... k) is considered as the underlying space of a Frobenius manifold where
the isomonodromic tau function 77 is defined; see [3], [4], [8] for details.

We also define the space H, to be the moduli space of pairs (X, ®) where X is a compact
Riemann surface of genus g > 1 and ® is a holomorphic 1-form over X. We denote by
Hg(ki, ..., km) the stratum of H, consisting of differentials ® which have m zeroes on X
of multiplicities (ki,...,kn). For more details about these spaces, we refer to [I1]. As
before, we also introduce a covering 7:[g(l<;1, ooy k) of Hy(ki,. .., kp) consisting of triples
(X, ®,{ai,b; | 1 <i<g}) where {a;,b; | 1 <i < g} is a canonical basis of Hy(X,Z).

Cuttlng the Riemann surface along the cycles glven by a Torelli marking {a;,b; | 1 <i < g},
we get the fundamental polygon X. Inside of X we choose (m — 1)-paths [; which connect
the zero p; with the other zeros p; for j = 2,...,m. The set of paths a;, b;, lj gives a basis in
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the relative homology group H1(X, (®),Z) where (®) = 37" k;jp; denotes the divisor of ®.

Following [10], local coordinates on 7:[g(k‘1, ..., kp) can be chosen as follows:
(2.2) A; = / D, B; = / o, Z; = / D,
a; b; lj
where ¢ =1,...,gand j = 1,...,m — 1. For simplicity, we also use another notation (; for

the coordinates defined by

G = A, Cgvi = By, Cgt+j = Zj+1-
Define cycles s; for i =1,...,2g+m — 1 by

s; = —bj, Sg+i = G
fori=1,...,g and define the cycle s3,; to be a small circle with positive orientation around
Pit1-

As before, Kokotov and Korotkin [I0] also define the Bergman tau function 75 over the
stratum Hgy(k1,. .., km) to be a holomorphic solution of the following compatible system of
equations:

OlogT V-1 Rp—R
(2.3) 875 _ B 0 for i=1,...,2g4+m—1,

¢ 127/, h

where ®(z) = h(z) dz for a local coordinate z. Here Rp denotes the Bergman projective con-
nection defined in (2.I]) and Rg is the projective connection given by the Schwarzian derivative
S(f* ®) with respect to a local coordinate 2. It is shown in [10] that 75 does not depend on
the choice of the /;, and that 7'%4 is a globally well-defined function on 7:[g(k‘1, ey k).

Finally we introduce covering spaces JZIQ,N(kzl, ..., k) and 7:[g(k1, ooy k) of ﬁng(k‘l, N )
and H,(ky, ..., kn) respectively, by marking an ordered set of generators {a;,b; | 1 <i < g}
of m1(X) rather than of Hy(X,Z). There are canonical maps from these spaces to the Te-
ichmiiller space T, of marked Riemann surfaces of genus g. Note that the tau functions 77, 7
can be lifted to these spaces. For simplicity we will mainly work over the spaces H gn(1l,...,1)
and 7:19(1, ..., 1) whose dimensions are m = 2g — 2 + 2n and 4g — 3 respectively.

2.2. Basic facts on Schottky groups and Schottky spaces. Given a compact Riemann
surface X of genus g > 1, there exists a Schottky uniformization of X, described as follows.
A subgroup I' of PSL4(C) is called a Schottky group if it is generated by L1,. .., L, satisfying
the following condition: there exist 2¢g smooth Jordan curves C,, r = +1,...,+g, which
form the oriented boundary of a domain D ¢ C = C U {oco} such that L,C, = —C_,,
r = 1,...,9 where PSLy(C) acts on C in the usual way and the negative signs indicate
opposite orientation. Any Schottky group gives a compact Riemann surface X = I"'\Q2 where
0 = U,ervD is the set of discontinuity of the action of I' on C, and every compact Riemann
surface arises in this way. A Schottky group is marked if it is equipped with a particular
choice of ordered set of free generators L1, ..., Ly. If the Riemann surface X is marked, then
requiring the by,...,by € m(X) to map to L1, ..., L, fixes the marked Schottky group up to
overall conjugation in PSLy(C).

We define a Schottky 3-manifold to be a smooth 3-manifold with boundary that is topolog-
ically a closed solid 3-dimensional handlebody M := M U X, where M is the corresponding
open handlebody, and the boundary X is a compact smooth 2-dimensional surface. We call
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a Schottky 3-manifold hyperbolic if it is equipped with a complete hyperbolic metric gps on
M, and we call it marked if it is equipped with an ordered choice of generators of 1 (M).

Any compact Riemann surface X with a uniformization by a marked Schottky group I'
gives a marked Schottky hyperbolic 3-manifold M U X in the following way: M = I'\H3
(where PSLy(C) acts on H? in the usual way), X = I'\(2, and the topology on M U X is
that inherited from H3 := H3 U C. The choice of the ordered set of generators L1, ... Ly
gives the marking on m (M), by identifying elements of I with deck transformations of the
universal cover of M. Conversely, by means of the developing map, every marked Schottky
hyperbolic 3-manifold M arises from a marked Schottky group in this way, and the group is
unique up to an overall conjugation in PSLy(C). When a marked Schottky group I' and a
marked Schottky hyperbolic 3-manifold M U X correspond in this way, we will say that the
group I' uniformizes the manifold M = M U X.

In summary, given a compact marked Riemann surface X, we obtain a unique marked
Schottky hyperbolic 3-manifold M U X whose conformal boundary is X. We will sometimes
write M = My if we want to emphasize that the manifold M is determined by the marked
surface X.

For a fixed g, the Schottky space of genus g, denoted by &, is the set of all marked
Schottky groups with g generators, modulo overall conjugation in PSLs(C). It is known
that &, has a canonical complex manifold structure of dimension 3g — 3, and its universal
cover is the Teichmiiller space T, with the covering map being holomorphic. The generators
Li,i=1,...,g, are holomorphic maps from &, to PSLy(C). In view of the uniformization
discussed above, we implicitly identify &, with the deformation space of marked Schottky
hyperbolic 3-manifolds.

Every Schottky hyperbolic 3-manifold is conformally compact: in some neighborhood N C
M of X, there exists a smooth boundary defining function r : N — R>( such that

i)r>0on NNM,r=0on X, and dr = 0 restricted to X,

ii) the rescaled metric g := r2gy; extends smoothly to N N M,

iii) |dr|2=1in N.

We also write § for the extension of the metric § to N N M. The conformal class of the
metric E‘T « 1s independent of the choice of boundary defining function; hence the choice of
a metric gps induces a unique conformal class of metrics on the conformal boundary X. For
genus g > 1, in each conformal class of metrics on X, there is a unique hyperbolic metric
gx of constant curvature —1. For genus g = 1, in each conformal class of metrics on X
there is a unique flat metric gx in which Area(X) = 1. We will need a parametrization of a
neighborhood N C M of the conformal boundary X. If we demand that §|T « 1s equal to the
metric gx, then the boundary defining function satisfying the conditions above is unique. For
a sufficiently small a > 0, this defining function r determines an identification of X x [0, a)
with a subneighborhood Ny, C N, by letting (p,t) € X x [0,a) correspond to the point
obtained by following the integral curve ¢; of Vgr emanating from p for ¢ units of time.
Throughout the rest of the paper, we will fix such an a. For this defining function r, the
t-coordinate is just r and Vgr is orthogonal to the slices X x {t}. Hence identifying ¢ with
on X x [0,a), the hyperbolic metric gy; over M has the form

gu =172(gr +dr?)

over N ), where g, denotes a Riemannian metric over X" := X x {r}. See [5] for more
details.
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3. FRAMINGS OVER SCHOTTKY HYPERBOLIC 3-MANIFOLDS

From here on, M = M U X will denote a marked Schottky hyperbolic 3-manifold with
conformal boundary X. In this section, we define what we mean by a “singular framing”
over M or over X, and we define a class of “admissible” singular framings which we will use
to define the Chern-Simons invariant. We then describe how to assign, to each holomorphic
1-form ® on X with only simple zeroes, an admissible singular framing on X. In Section
we will describe how to relax the assumptions on ®. Finally, we prove that an admissible
singular framing on X “extends” (in a sense to be defined below) to an admissible singular
framing on M.

3.1. Admissible singular framings. Let F'(M) denote the SO(3) frame bundle with the
projection map p : F(M) — M. For a subset U C M, by a framing over U we mean a section
of F(M) over U.

Let £ denote an union of disjoint simple curves in M. A framing over £ in M, written as
(e1(y),e2(y),e3(y)) € Ty,M & TyM @ T,M for each y € L, is called a reference framing on L,
if e1(y) is tangent to £ at each y € L.

Let N¢(£) be an e-neighborhood of £ in the metric gps. A choice of reference framing
over L allows us to construct the deleted e-tube around L, which by definition we take to be
a map

a:(0,€) x L x St — (N(L)) c M,

constructed as follows: for each (p,y,v) € (0,€) x £ x S', we take the unique geodesic starting
at y with initial vector cos(v)ea(y) + sin(v)es(y), and travel a distance p from y to the point

a(p,y,v).

Given a reference framing x on L, we define the corresponding reference framing of the
deleted e-tube around L by parallel translating the reference framing x along the unique
geodesic connecting y and «(p,y,v). This gives a lifting

a:(0,e) x Lx S = p L (N(L)) C F(M)
of the map . The standard cylinder over L is the map
Y Lx St = p (L) c F(M)
which takes the point (y,v) € £ x S! to the framing
Y(y,v) = (e1(y), cos(v)ea(y) + sin(v)ez(y), — sin(v)ea(y) + cos(v)es(y))

at the point y.
A matrix function

A:(0,€) x L x ST = SO(3)

acts on a framing & of the deleted e-tube around L by fiberwise right multiplication:

3 3 3
(e1,e2,e3) - Alp,y,v) = (O eiain, Y eiaig, Y eiaiz),
i=1 i=1 i=1

over a point a(p,y,v) where a;; denotes (i,7)-entry of A(p,y,v). We denote the resulting
framing by & - A. A matrix function A : £ x S' — SO(3) acts on the standard cylinder v to
give 1 - A in the same fashion.
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For a connected simple curve £ C M, the special singularity of index n at £ is the framing
a- A, over the deleted e-tube around ¢, where & is the reference framing on the deleted e-tube
around /£, and A,, is the matrix function on (0, €) x £ x S! defined by

1 0 0
An(p,y,v) = | 0 cos(nv) —sin(nv)
0 sin(nv) cos(nv)

For fixed y € £ and v € S, the limit of & - A, as p — 0 exists, and equals the framing
(e1(y), cos(nv)es(y) + sin(nv)es(y), — sin(nv)ea(y) + cos(nv)es(y)) over y. Hence the map
consisting of these limits as p — 0 for all y € £ and v € S' is given by n-copies of the
standard cylinder over . Here a negative integer n indicates opposite orientation. For L a
disjoint union of simple curves, we say that a framing F over M \ L has a special singularity at
L if F o« has the special singularity of index n for an integer n on each connected component
of (0,€) x £ x S'. Let us remark that n could be different over each component of £. Our
definition of special singularity coincides with Meyerhoff’s [16] when n = 1.

For a connected simple curve £ C M, the admissible singularity of index n at £ is the special
singularity framing of index n at ¢, acted on by a matrix function A:

(3.1) a-A,-A:(0,€) x £x ST = pTLHNE(0) € F(M),

where A : (0,€) x £ x ST — SO(3) satisfies the condition that lim, 0 A(p, y,v) exists and is
independent of v, for all y € £ and v € S'. We say that a framing F over M \ £ has an
admissible singularity at £ if the limit of F o o as p — 0 exists for all y € £ and v € S and
the map given by this limit is the same as the map given by the limit of & - A, - A as p — 0,
that is, n-copies of the standard cylinder acted by A over each connected component of L.

Recall that, on a neighborhood of X in M, we have a rescaled metric § = r2¢y which
extends to X and coincides with the metric gx there. Now, an admissible singular framing
(F, kK, L) over M consists of a union of disjoint simple curves £ in M, a reference framing x
over L, and a framing F over M \ L, satisfying

i) the closure £ is smooth in M, and L is orthogonal to X in g at the intersection,

ii) the framings 7~'F and r~'x extend smoothly to M \ £ and L respectively,

iii) the first vector e; of F is tangent to the gradient flow curves of r over Ng) \ £ for
0 <e<a,and

iv) the framing F has an admissible singularity at L.

Let ¢1,...,¢,4 be closed curves in M representing the marked generators of (M), with
the property that there exist discs Dq,...,Dg—; such that M \ UD; is the disjoint union of
g solid tori ¢; x D, where D is the unit disc. Given an admissible singular framing (F, , £),
define £! to be the set of connected components of £ that are closed, and define £2 := £\ L.
Then (F, k, L) will be called standard if

i) F has a special singularity of index 1 at each curve in £' where the set £! is a subset of

{1,..., 4y} and
ii) the index of the admissible singularity of F at each curve in £2 is —1.

We define an admissible singular framing on a surface X with the metric gx in a similar
way. Let Z consist of finitely many points in X. A reference framing on Z is a choice
of a frame (ez,e3) at each point z € Z, orthonormal with respect to the metric gx. A
reference framing on Z defines a geodesic polar coordinate a : (0,€) x Z x St — N<(Z)\ Z
which takes (p, z,v) to the point at distance p from z € Z along the geodesic with initial
vector cos(v)es(y) + sin(v)es(y). Parallel translation gives a corresponding reference framing
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@ over (0,€) x Z x S'. The special singularity of index n at z € Z is the framing & - 4, on
(0,¢) x {2z} x S* where & denotes the reference framing and A, is the matrix function given
by
cos(nv) —sin(nw
An(p,v) = <sin((nv)) cos((nv))> '

An admissible singularity of index n at z is the special singularity, right-multiplied by a
matrix function A(p,z,v) with the property that lim,_,o A(p, z,v) exists and is independent
of v. An admissible singular framing (F, k, Z) on X consists of a finite set Z in X, a reference
framing on Z, and a framing F of X \ Z such that the limit of F as p — 0 exists for all v € S*
and the map given by this limit is the same as the map given by the limit of an admissible
singularity at each point of Z.

3.2. Admissible singular framings associated to holomorphic 1-forms. Suppose that
X is a Riemann surface, with metric gx compatible with its complex structure. We now
describe how to assign, to a holomorphic 1-form ® with only simple zeroes, an admissible
singular framing with index —1 singular points at the zeroes of ®.

The metric gx is a collection {e®*|dz4|?}aca on an atlas {(Us, 24) faca of X for which the
functions ¢, € C*°(U,, R) satisty

(3.2) b +10g|frg(28)> =ds  on Uy NUs,

where fog = 24 0 zﬁ_l 1 28(Ua NUg) = 20(Uy N Up) are the holomorphic transition functions.
A holomorphic 1-form ® on X is a collection {hydz,} for the atlas {(U,, z4)} for which A,
is a holomorphic function on U, satisfying

(3.3) he (;B(Zg) = hg on U,NUg.

The phase function e := h,/|hy| is well defined over X \ Z where Z denotes the zero set
of ®. The transformation law (3.3]) implies

(3.4) i +logM:i9 on Uy,NU,
| B TFPEOT I o

Note that 6, is defined only up to an integer multiple of 27. By [B.2]), (3.4)), it follows that
e®e/2ti00 defines an orthonormal co-framing we,ws given by

Wog = e®a/2 (cos Opdxy — sinbydy,,), W3 = e®a/2 (sin Oy dzs + cos 0,dy,,)
on U, \ Z where z, = 24 + iyo. Now we obtain an orthonormal framing
Fo = (f2,f3)  where fo=uwj, f3=uw;

over X \ Z, which has admissible singularities at Z of index —1.

For the singular part Z, let z;, denote the co-ordinate of a zero of ® in a patch U,. Then
he has an expression h, = (2o — Zia ) hia, Where h;, is non-vanishing at the zero. Now we put
eifia .= fzm / |l~zm| Since hj, is non-vanishing at the zero, 8,4 is well-defined at the zero up to
an integer multiple of 2. By (3:2), (33), it follows that e%(¢a+i9i’a)dza defines the following
orthonormal co-framing at the zero,

Woq = e¢“/2(cos(§a/2)dxa —sin(0a/2)dya ),

3.5 - -
(8:5) D3g = e¢“/2(sin(9a/2)dma + cos(0./2)dy.,),
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and the corresponding orthonormal framing ( fg, fg) at the zero. By the transformation law for
h, this orthonormal framing transforms correctly under change of coordinate. Note however
that this co-frame and frame are well defined only up to sign.

We select g — 1 of the points in Z to have the framing (fs, f3), and let the other g — 1
points in Z have the framing ( fg, — fg); we denote the resulting framing at Z by k¢. When we
extend the framing Fg to M, these will correspond to “outgoing” and “incoming” endpoints
of curves in M respectively.

3.3. Existence of admissible extensions. On a subset of X, we can identify any SO(2)
framing with respect to gx with an SO(3) framing with respect to g, by taking each framing
(f2, f3) to the framing (f1, f2, f3), where f; is the inward unit normal vector to X with respect
to g. We say that an admissible singular framing (Fx,kx,Z) has an admissible extension
to M if there exists an admissible singular framing (F, k, L) over M such that L = Z, and
such that the extension of 7' F and r~'x equals the given framing Fy and ry, respectively,
under the identification above.

Now, our goal is to show that, for a holomorphic 1-form ® with only simple zeroes on X,
the associated admissible singular framing (Fg, ke, Z) on X extends to an admissible singular
framing (F,x, L) on M. (A similar proof shows that any admissible singular framing on X
extends to M.)

Before proving the existence of such an admissible extension, we establish two lemmas.

Lemma 3.1. Suppose W = W UOW is a marked smooth 3-dimensional closed handlebody of
genus p with metric gy, and suppose that Faw is a smooth (non-singular) SO(3) framing of
OW . Then there exists an admissible extension of Faw to W which has a special singularity
of index 1 at L'. Its set of singular curves L' may be taken to consist of at most p closed
curves, each representing a distinct marked generator of m (W).

Proof. There exists a smooth embedding of W into R3, which gives a global framing F; on
W, by which we can identify any other framing on W with a map to SO(3). Let £° be
the union of p closed simple curves representing the marked generators of 71(W). Given a
connected curve ¢ in £°, there exists a disc D in W such that W\ D is the disjoint union of a
handlebody of genus p — 1 and a solid torus T satisfying TN £ = ¢ and 0T ~ ¢ x S*. Since
0D is homologically trivial in OW, it is a commutator in 1 (0W') and so its image in SO(3)
under the framing Fgu is homotopically trivial. Hence Fagy can be smoothly extended to
D c 9(W \ D). In this way the problem reduces to finding a framing on each solid torus 7.
If 71 (T) is represented by ¢, identify OT with ¢ x S*. The image of this S! in SO(3) given by
Faw is either homotopically trivial, in which case the framing extends smoothly to all of T,
or it is homotopically nontrivial, in which case the framing has the same homotopy type as
a special singularity framing of index 1 around ¢ and can thus be extended to a framing on
T\ ¢ with this singularity. d
From now on, we put a; = § for simplicity, where a is defined as in subsection
Lemma 3.2. Let M = M U X be a marked Schottky hyperbolic 3-manifold, and let a > 0 be
such that the neighborhood N C M of X exists. Let ® be a holomorphic 1-form with only

simple zeroes on X and (Fg,ke,Z) be the associated admissible singular framing as defined
above. Then (Fo, ke, Z) has an admissible extension to N q,)-

Proof. If Z is the singular set of the framing F3 on X, then we can take the set of singular
curves to be the gy geodesics given by £ = {¢,(z) : x € Z,r € (0,a1]}. Given an admissible
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singular framing Fe = (f1, fo, f3) over X \ Z with respect to § = 72gas, one can find an
admissible singular framing F = (e, ez, e3) with respect to gps that is parallel near infinity
and extends Fg, by rewriting the parallel transport equation for e; with respect to gps in
terms of b;, where e;(r) = rb;j(r) = r(b} (7’)% + b?(r)a% + b?(r)a%). The parallel transport
equation along the gradient flow curve ¢, becomes

b (r) + by (r +7“ZF (6r) 9107 (r) =

and we use the solution, with initial conditions b;(0) = f;, to define e;. We extend the
reference framing on £ in the same manner, using the reference framing on Z as the initial
condition. O

Theorem 3.3. If M = M U X is a marked Schottky hyperbolic 3-manifold and ® is a
holomorphic 1-form with only simple zeroes on X, then the associated admissible singular
framing (Fo,ke,Z) on X extends to an admissible singular framing (F,k,L) on M. The
framing (F, Kk, L) can be taken to be standard.

Proof. We begin by defining the £2 part of the singular curve of F. In Lemma [32] the £?
part in N(O,%} is defined to be the gradient flow curves. Now we extend them by taking pairs
of two ends in X' of those curves and making curves to connect them smoothly within N ).

We may assume that each connected curve 4;, i =1,...,g— 1 in £? meets level surface X¢ at
two points for a; < € < § and at one point for e = §. By construction, the end points of L?
are given by the zero set Z = {p1,...,p2g—2} of ®. As we mentioned in the end of subsection

[B.2] we may assume that if the reference framing is taken to be ( f, fg) on one end of ¢;, then
the reference framing is taken to be ( fo, — fg) on the other end of /¢;.

Let us choose a reference framing x2 on £2 which extends (fs, f3) and (f2, —f3) at each
end point respectively, and which satisfies the parallel condition over £2 N N,a,- We also
let F be the admissible extension of Fg on the set N(O&] guaranteed to exist by Lemma
Note that F has an admissible singularity of index —1 at £2N N(0,a,) by definition.

Now we define F over N¢(£2?)N N, [a1,a) SO that F has an admissible singularity of index —1
at L2N N, [a1,a)- Let B; be a diffeomorphism from ¢; € M to [—1,1] which maps the end with
the reference framing (fo, f3) 0 —1 and the end with the reference framing (fa, —f3) to 1,
and maps ¢; N N[, 4) to [-3 3 2] Let 5 be a smooth increasing function on the interval [—1, 1]
whose derivative is supported in (—3, 3) whose values are 0 on [—1,—3] and 7 on [1,1]. We
define y : £2 — [0, 7] by the composition of & and §; over ¢; and let

cosx(y) 0 —sinx(y)
(3.6) A(p,v,y) = 0 1 0 on (0,€) x (£%*N N[%ﬂ)) x St

sinx(y) 0 cosx(y)

and A over (0,¢) x (£2N Nia,,2)) ¥ S is defined to connect the above matrix in (3.6) and

the matrix A determining the admissible framing F over N(£?) N X% . We may assume
that lim, 0 A(p,v,y) exists and is independent of v, for all y € £? and v € S'. Then, for
the reference framing @& of the deleted e-tube around £ obtained from 2, we define F by the
equality Foa =a-A_1- A over N¢(L2) N N, [a1,a)» Which extends the previously constructed
framing F over N(g,,)- Note that this extension of F is independent of the choice of a
reference framing x% on £? satisfying the conditions above. In particular, the extension of F
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does not depend on the choice of signs in k¢. By definition, this framing F has an admissible
singularity of index —1 at £2N Niaya)-

So far an admissible framing J has been constructed over N(g 4] UN€(£L?). Now we extend
it over M \ (L' U £?) by appropriately choosing £!. First let W, denote the closure of
M\ N¢(£?) where M® = M \ N(g4,). Then there is a homotopy which deforms Wy to a
closed handlebody W of genus 2g — 1. Given a set of generators of 71 (M) ~ w1 (M), there
exist (g — 1)-closed discs D; C Wi, i =1,...,9 — 1 such that these decompose W; into one
handlebody of genus g and solid tori T;, i = 1,...,g9 — 1 satisfying the following conditions:
the decomposed handlebody of genus g contains the homotopic images of loops realizing the
given generators of w1 (M 7). For a generator ¥; of m(T}), there is a closed curve v; in Wy
given by the (inverse) homotopic image of the loop realizing 4;. By this construction, the
set G of generators of w1 (Wj) is given by the union of the chosen generators of m (M) by
marking and the set of v1,...,74-1.

Applying Lemma [B] for the framing defined as above over the boundary of the closure
of Wy, we obtain an admissible extension of (Fg,ks,Z). To show that we can take it to
be standard, we have to modify the construction so that £ consists of representatives of
the marked generators of 71 (M). Suppose that £' contains a representative of a generator
~;. Then we may replace the reference framing & with another framing with an additional
rotation 27 along the corresponding part of £2. This will change the homotopy type of the
admissible singular framing F along it since m(SO(3)) = Z/2Z. Hence it can be extended
over the subset of Wy corresponding to 7; without removing a curve representing ;. This
means £ can be taken to represent a subset of the given generators of 71(M). Then this
completes the proof. O

4. DEFINITION OF THE INVARIANT CS

4.1. The form C on PSLy(C). If H? is the hyperbolic space of dimension 3, the frame
bundle F(H?3) can be identified with PSLs(C) canonically. Let

= (o )= (50 = (0.

Then {h,e, f} form a base of the Lie algebra slp(C) of PSLy(C). Let {h,ef, f&} be its dual
base of Homc(sl2(C),C). In Section 3 in [18], Yoshida defines the form C as the left-invariant
differential form on PSLs(C) whose value at the identity is given by;ig ht-Net A f¢, and proves
the following:

Proposition 4.1. The form C on PSLy(C) is complex analytic, closed, and bi-invariant,
and has the following expression
1
C = m(élel A B N\ b3 —d(01 Abag + 02 A B3 + 03 N 612))
—1—4—:‘_2(912/\913/\923—912/\91 A By — 013 N0 N0O3 —923/\92/\93).

Here 0; and 0;; denote the fundamental form and the connection form respectively on PSLy(C)
of the Riemannian connection of H3.

Since H? has constant sectional curvature —1, Qj =—0; N0 fori,j =1,2,3. Thus C is a
complex analytic form on P.SLo(C) whose real part, up to scalar multiplication, is the volume
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form plus an exact form, and whose imaginary part, up to scalar multiplication, is the Chern-
Simons form defined in [2]. Using the equalities df; = — . 0;;A\0;, df;; = — >} 03 NOx;+825,
one can obtain

Proposition 4.2. The form C on PSLy(C) has the following expressions

7

4n?

1 .
= —F(deggg A6+ doy A 923) + %(d@g:; A O3 — dby N 91),
s 4

where n = 01 — i6a3.

C= nAdn

For an oriented smooth hyperbolic manifold M = I'\H? of dimension 3, let M be the
universal cover of M and d : M — H? be a developing map. Taking the differential of d,
we obtain the SO(3)-bundle map d : F(M) — PSLy(C). Since the form C is left invariant,
d*C projects to a closed form on F(M) = I'\F(M) which by abuse of notation we denote
also by C. Now, for the rest of this section, suppose that M is a marked Schottky hyperbolic
3-manifold. For an admissible singular framing (F, s, L) over M, we introduce a map

(4.1) s:(M\L)UL — F(M)

defined by the admissible singular framing F over M \ £ and the reference framing x on L.
For 0 < € < ay, we now define

(4.2) CSE(M, 5) = / S et / (61 — is5)
s(Me\L) =2 s

where M€ := M \ N, ¢; denotes a connected component of £, and E;- :=/{; N M€ . Here
the sum is over the connected components ¢; of £ and n(j) is the index of the admissible
singularity of F at £;. The complex-valued invariant we define will be a suitably regularized
value of CS°(M, s) as € — 0.

For a standard admissible framing (F, x, L) over M, the singular curve £ consists of two
parts: £' is a union of simple closed curves and £? is a union of curves connecting two end
points in X = M. Then the quantity defined in (&2 is given by

1 1
(4.3) CS* (M, s) = / C—— (01 —i623) + —/ (01 —i023)
s(Me\L) 27 s(L£1) 27 s(L£2€)

where £2€:= £2 N ME.

4.2. Boundaries of s(M¢\ £). For a standard admissible framing (F,x, L) over M, we
investigate the structure of the boundaries of s(M€\ L) where the closure is taken in F(M).
The boundary 9(s(M¢€\ L)) consists of three parts which we are going to describe below.

One part of the boundary d(s(M¢ \ £)) is given by the closure of s(X€\ £2) in F(M), which
we denote by B%¢. Note that the boundary of B%¢ consists of a disjoint union of circles.

The second part of the boundary 9(s(M<\ £)) is given by ,c 1 lims—o s(Ss(y)), where
Ss(y) denotes the circle consisting of points in the orthogonal disc to £! of distance § from
y € L1. For y € £, the limit of s(S5(y)) as 6 — 0 exists since the framing F has a special
singularity of index 1 at £'. We denote this part of boundary, which does not depend on e,
by B!. Actually B! is given by the standard cylinder over £!: there is a map

¢ LY x ST — pTH (LY ¢ F(M)
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which takes the point (y,v) € £' x S* to the framing

(4.4) ¥(y,v) = (e1(y), cos(v)ez(y) + sin(v)es(y), — sin(v)ez(y) + cos(v)es(y))
at the point y € L'. Here (ey,ea,e3) is the reference framing ! on £'. The boundary
orientation of B! is induced from F and is given by (zp*a%,w*%) so that v is orientation-
preserving.

The remaining part of boundary d(s(M€\ £)) is given by U, 2. lims o s(S5(y)). For
y € L2, the limit of s(Ss(y)) as § — 0 exists since the framing F has an admissible singularity
of index —1 at £2. We denote this part by B*¢. Note that B>¢ has circle boundaries which
are the boundaries of B%¢ with the opposite orientation. As the case of B!, B? = lim,_,o B>€
can be described in terms of the standard cylinder over £2 with some modification. There is
a map

YL x St — pHL?) C F(M)

which takes the point (y,v) € £L2 x S* to the framing given by
(4.5) U(y,v) = (e1(y), cos(v)ez(y) + sin(v)es(y), — sin(v)ez(y) + cos(v)es(y)),
where (e1,e9,€3) is the reference framing k% on L£2. We denote by B? the image of 1. We
take the orientatif)n of B? to be given by (1/)*(-%, —T,Z)*%), so that 1 is orientation-reversing by
definition. The B? and B? do not coincide completely, but we can describe their difference
explicitly:
Lemma 4.3. The fiberwise right multiplication of A appearing in equation (B;:I) induces an
orientation preserving diffeomorphism A of p~*(N€(L£?)) C F(M) mapping B* to B* over
L2,
Proof. The claim follows directly from the definition of admissible singularity. O

4.3. Real part of CS°(M,s). We start with

Lemma 4.4. For s corresponding to an admissible singular framing (F,k, L), the following
equalities hold over N q,) \ £2,

w12 = I[(eg, 62)0.)2 + I[(eg, 62)0.)3, w1z = I[(eg, 63)0.)2 + [I(eg, 63)0.)3,

where w; = s*0;, w;; = s*0;; denote the fundamental forms and connection forms pulled back
by s respectively, and I1(x,*) denotes the second fundamental form.

Proof. By definition of F = (e1,e2,e3), e is tangent to a geodesic which is also trajectory
of the gradient flow of the defining function r and es,e3 are tangent to the level surface
X€ with r = e. We use the equality wij(er) = —gam(Ve,€i,€;) to obtain wij(e;) = 0 and
wijler) = —gm(Veger,ej) = I(eg, e5) for j = 2,3, k = 2,3. This completes the proof. O

The mean curvature H is defined to be the trace of I1. (Note that H is defined to the half
of the trace of II in some of the literature.) In [I3], W-volume of M€ is defined by

1
W (M*€) := Vol(M*) — 1 Hdvol
Xe
where Vol(M€) denotes the volume of M€ and dvol denotes the area form over X¢ induced by
gr- One nice property of W-volume proved in Lemma 4.5 in [I3] is the following equality:
for 0 < € < a,

(4.6) W(M€) =2n(1 — g)log e+ W, (M),
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where W (M) := lime_0 Wep, (M€) exists and defines the renormalized volume W (M) of M
as in Section 8 of [13].

Proposition 4.5. For s defined by a standard admissible singular framing (F,k, L),
1
ReCS (M, s) = PW(ME) for 0<e<a.
Proof. By the definition, we have

/ ReC:%/ (491 /\92/\93—(1(91 /\923+92/\931+93/\912))
s(M\L) Am® Js(are\z)

(4.7)

1 1

:—2V01(Me) — 7 / 01 A O3 + 09 A 031 + 03 A B19.
i A= Jo(s (ML)

For the second equality in (A7), we apply Stokes’ theorem. Now we consider the integrals

over the boundary d(s(M¢\ £)) = B% U B! U B%¢. For the boundary integral over B%¢, we
have

1 1
——2/ 01 A O3 + 05 A O3 + 03 N b9 = —2/ w1 ANwog + w2 Awszr + w3z Awia
47T BO,e 47T €
1
= —4—7‘_2 Xétr[] wo N\ wg = — m . HdVOl,

where X°€ is oriented by wy A w3 and the second equality follows from Lemma 441

For the boundary integral over B!, recall that the boundary B! is diffeomorphic to £! x S*
by ¢ in ([#4), and that 1/1*% is a vertical vector field and 1/1*91]-(8%) =0 for j = 2,3 by
definition of B!, hence ¥* (92/\931)(8%, %) =0, w*(93/\912)(8%, x) = 0. Moreover, by definition,
1/)*923(%) = —1. This implies

1 1
—— 0L NO O N0 O3 NbO1o =— — (1 N0
47?2/31 1 A Og3 + 02 A\ 031 + 03 N\ b2 4772/le31¢(1 23)
1 1 1
2 Elw ! 2 £18 ! 2 s(L£1) !

Hence the boundary integral over B! cancels the real part of the second integral in ([A3).
For the boundary integral B¢,

1
C4n2 g

1

T P*A*(01 A O3 + b2 A 031 + 03 N 012),
/s [2ex 81

01 A O3 + 05 N O31 + 03 A B19

where 1 is given by ([@5]). Using A*0 = A™' -0 and A*© = A~! . dA+ A™' - © - A with
0= (91792793)t7 0= (eij)v

A*(91 A B33 + 09 A 031 + 03 A 912)

3
4.8
( ) =61 N3+ 03 ANO31 + 03 N\ B2 + Zej AN (aleg -dAs + angg -dA; + angl . dAg)
j=1
where a;;, denotes the entry in A and A; denotes the column vector of A, and A;-dAj, denotes
the inner product of two vectors. By Lemma [4.3] and (4.8]), and repeating the computation
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of the integral over B!,

1
) TZJ*A*(Hl A B3 + 09 N O31 + O3 A 912)
/s L2:ex 81
1 1 5
= — % 01 — m / 1[)*(29] VAN (aleg -dAs + angg -dA; + angl . dAg))
s(£2:) crexst i
1
- - = 91.
2 s(£2:€)

Here we use that ¢ : £2 x S' — B? in ([@X) is orientation reversing, and that the form
involving A vanishes on the vertical vector field 1[)*%. Hence the boundary integral over B>€
cancels the real part of the third integral in (43]). This completes the proof. O

4.4. Imaginary part of CS°(M,s). Now we prove

Proposition 4.6. For s corresponding to an admissible singular framing (F, k, L), the imag-
inary part of CS (M, s) converges to a finite value as € — 0.

Proof. Over N q,) \ £2, the pull back of the imaginary part of C by s is given by

1
(4.9) m(wlg N wiz A wag —wi2 Awy Awo — w1z Awy A w3z — wa3 N wa /\wg).

The first and the last terms in ([£9]) vanish respectively since they are sum of triple wedge
products of we, w3 by Lemma [£4]l The second and the third terms in (4.9) cancel each other
by Lemma [£.4] and the fact I1(ez,e3) = II(es,ez). Hence the imaginary part of the first
integral in (4.2)) is finite and independent of 0 < € < ay. For the imaginary part of the line

integral over £, note that for ¢; € L2, the integral fm Ny, W23 Teasures the total rotation
€,a1

of £ with respect to parallel translation on £; N N 4,]. Since r~lx extends smoothly to M
by definition, the limit of the line integral as ¢ — 0 has a finite value. This completes the
proof. O

Proposition 4.7. For a given marked Schottky hyperbolic 3-manifold M, if sg, s1 are defined
by standard admissible framings (Fo, ko, Lo) and (F1,k1,L1) on M which are related by a
homotopy of standard admissible framings which are fized outside of M, then

Im CS*(M, so) = Im CS*(M, s1).
Proof. Let (Fy, ku, L4,), with u € [0, 1] be the homotopy connecting (Fo, ko, Lo) and (Fi, k1, L1).

The framing F, defines a section s : W, — F(M) over W, := [0,1] x M\ {(u,y,) | yu €
Ly, u € [0,1]}. Denoting by @ the imaginary part of C', we have

(4.10) 0=/ Q= [ o/ o+ [ @

(We) Js1(Me\L1) Jso(M¢\Lo) By

The boundary By consists of three parts BO, Bl, and Bz, consisting of the trajectories
under the homotopy F, of B%¢, B!, and B?€ respectively. For the integral over the part BY,
91'(8*3%) =0 and 9ij(3*3%) =0 over B = B%¢ C F(M). Therefore

(4.11) Q=0
BO
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The boundary B! is diffeomorphic to [0,1] x £' x S! by

P(u,y,v) = {u} x (e1(y), cos(v)ea(y) + sin(v)es(y), —sin(v)ez(y) + cos(v)es(y))
where (e1(y), e2(y), e3(y)) denotes the reference framing ,(y) for y € £'. Here and below,
we identify £} with £! = £} implicitly. The orientation (%, 8%7 —%) on [0,1] x £} x St
makes 1) orientation preserving. As before, w*Qij(a%, x) =0for1<i,j<3, (w*elg)(%) =0,
(1/1*913)(8%) =0, and (1&*923)(%) = —1. From above facts, we have

1 1
VQ = mib*(@lz N 013 A O3 + O3 N\ Qo3) = mw*(%s A dba3),

and

Y03 = —dv + q" 5" 03,
where ¢ : [0,1] x £} x S* — [0,1] x £ is the natural projection, s, : L' — F(M) is the section
defined by r,, and s : [0,1] x £L! — F(M) is the corresponding family given by s(u,-) = s,. It
follows that ¥*@Q = —ﬁgdv A d(q*s*023). With the above orientation convention, by Stokes’
theorem, we have

1
/ Q :/ Q= 13 / dv A d(q"s™023)
B1 [0,1]x £1x 51 T J]0,1]x £1x S1
1

1
= d(8*923) = %(/El ST923 — /Ll 88923).

21 Jj0,1)x 2t

(4.12)

The right hand side of ([AI2]) is the same as the difference of the imaginary parts of the second
integrals for u = 1 and u = 0 in the definition of CS*(M, s) in (3.
For the boundary integral over B¢, as in the proof of Proposition we have

/ Q:/ W AQ
B2 [0,1]x L2 x ST

where 1) is the orientation reversing diffeomorphism defined in ([@3]). We also have

1
A'Q = Q+ 5 Tr((A7'dA)%)
(4.13) 2%772 o o o
+ md(elg NdA; - Ag + 013 NdAy - Az + 023 N dAs - As)

where A; denotes the row vector of A. Hence, in a similar way as (£12]),

Q

BQ,E

1 * * 1 * 74 1 * 7 A 1
(4.14) = — %(/(:2,6 81923 - /Ez’€ 80923) 27'('( o 1/11dA2 Ag o ¢OdA2 Ag)

1 * *
= — %(/LZe 81923 — /Ez’€ 80923)

where 11 and vy represent v taken at © = 1 and u = 0. Here the first equality follows from
that ¥*6019, ¥*013, and the form involving A vanish on the vertical vector field 1/)*%. The
expression (1/2m) [, YrdAy - As can be shown to be the total rotation angle of Ay about the
axis A, along £%€. Since A is fixed at the endpoints of £2€ through the homotopy, this total

rotation angle does not change, so the second equality follows. The right hand side of (414
is the same as the difference of the imaginary parts of the third integrals for v =1 and © = 0
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in the definition of CS*(M, s) in (@3]). Combining (410, (£11)), (AI2) and (£I4]) completes
the proof. O

4.5. Definition of the invariant CS()M,s) and the function CS. For s : M — F(M)
corresponding to an admissible singular framing (F, k, L) as explained after equation (@.II),
we define the Chern-Simons invariant of (M, s) to be

1
CS(M,s) = 3 li_])r%ImCSE(M, s),

where the limit exists by Proposition By Proposition 4.7 CS(M,s) is independent of
a homotopic change of an admissible singular framing (F, x, £) inside of M“. We can now
define the invariant CS(M, s).

Definition 4.8. For s : M — F(M) corresponding to an admissible singular framing
(fa K‘a £)7

CS(M, s) := lim (CS*(M, s) + %(g —1)loge).

e—0

By (£6) and Proposition [4.5] as we stated in (L.2]), we have

CS(M, 5) = %W(M) +2iCS(M, s).

Now, suppose we are given a compact marked Riemann surface X and a holomorphic
1-form ® on X, with corresponding admissible singular framing (Fg, ke, Z) over X. Then
we have associated to this data a unique marked Schottky hyperbolic 3-manifold Mx and a
standard admissible extension (F,k, L) over My corresponding to s¢ : Mx — F(Mx). We
now consider to what extent the invariant CS(My, s¢) depends on our choice of admissible
extension s¢. We have already shown in Proposition 4.7 that it is independent of a homotopic
change of (F,k, L) in M§'. Now we show

Proposition 4.9. The quantity exp(4rCS(Mx, s¢)) is independent of the choice of signs in
ke and of the choice of k.

Proof. Note that the modulus of exp(4nCS(My, se)) depends only on Mx by Proposition
For the argument of exp(47CS(Mx, s¢)), there is a choice of a reference framing x which
can rotate along £, but a change of a rotation number results in only an integer difference
in the imaginary part of CS(Mx, s3) through the second and third integrals in (d3]). There
are sign ambiguities in the definition of the reference framing at zeroes of ® mentioned just
after (3.5]). Hence the imaginary part of CS(My, s¢) is well-defined only up to addition of a
half-integer, but this ambiguity will disappear for exp(47CS(Mx, s3)). d

To state the main result of this section, we need to introduce an auxiliary space. For
each point (X, ®) in 7:[g(1, ..., 1), we attach the data of a choice of isotopy class of g — 1
simple, pairwise disjoint curves in Mx whose endpoints are the zeroes of ®. The resulting
space 7—2;(1, ...,1) is locally isomorphic to 7:19(1, ...,1), and there is a natural projection
map to 7:19(1, ..., 1) corresponding to forgetting the added data. Note that each connected
component of 7—2;(1, ..., 1) covers 7:19(1, ..., 1) by this projection map.

Theorem 4.10. The expression exp(4nCS(Mx, sg)) determines a globally well-defined func-
tion exp(4nCS) : H3(1,...,1) — C.
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Proof. Given a point in 7—1;(1, ..., 1), we use Theorem [3:3] to construct a standard singular
admissible framing on My, whose £2 curves are isotopic to the given g — 1 curves. It is clear
from the construction that any two such framings are related by a homotopy, which is an
isotopy of the corresponding set of curves £. It then follows from Propositions .7 and
that the value of exp(4rCS(Mx, s3)) is uniquely determined by this data. O

Remark 4.11. The proof of the main theorem in Section§ will show that, in fact, the function
exp(47CS), restricted to any connected component of ’H;(l, ..., 1), descends to a well-defined

function on 7:19(1, ..., 1). Restricting to a different connected component of 7—2;(1, ooy 1) will
give a function on 7:[g(1, ..., 1) differing from the original by a multiplicative constant.

5. VARIATION OF THE INVARIANT CS

Suppose we are given a contractible open set U in 7:[;(1,...,1). By the results of the
previous section, the invariant CS(Mx, s¢) determines a function CS : U — C, which is well-
defined up to addition of %m for n € Z. In this section we find expressions for the derivatives
OCS and OCS of this function.

5.1. Basic notations for variation. Each point u € U determines a compact marked
Riemann surface X, together with a holomorphic 1-form &, on X,. We fix a basepoint
up € U, and for simplicity we write X = X, and similarly below. We will always assume that
X, is uniformized by a marked Schottky group, X, = '\, where T, is a marked Schottky
group with marked normalized generators {L1(u),..., Ly(u)} and ordinary set ,. The group
I, simultaneously defines a marked Schottky hyperbolic 3-manifold M, := Mx, = T',\H>.
For each u € U, we have a quasi-conformal mapping f, : Q — €. Define P¢ : Q, — H3 to
be the map translating points along the integral curve ¢; of Vg r, emanating from z € €,
for € units of time, where g and r are defined as in subsection Then we define a map
£, 1 Ugceca, PE(Q) — H3 by

(5.1) fulpey = P ofyo (PN

(Here a1 = ¢, where a is defined as in subsection 2.21) This map extends to a diffeomorphism
f, : H3 — H3, satisfying f, oy = 7, o f, for all v, € T,,.

Corresponding to the family ®, and the given homotopy class of ¢ — 1 curves in M,
connecting the zeroes of ®,, we take a smooth family of sections s, := s¢, : (M, \ Ly) U
L, — F(M,), constructed as in Theorem EI0l Here £? is taken to be isotopic to the given
g — 1 curves, and £, = £,(£). We also denote by L, and s, the corresponding liftings
L, C H® and s, : (H®\ L,) UL, — F(H3) = PSLy(C). The family defines a map s :
Ux H? ={(u,z) |ue€Uxe (H>\ L,)UL,} - PSLy(C). We let K be the unique map
K :U x so((H>\ L)U L) — PSLy(C) satisfying

K o (id, sg) = s o (id, ),
where s o (id, f)(u, ) := s, o f,(x) for (u,x) € U x H?. As observed in subsection 2] the
closure so(H3 \ £) of so(H?\ L) in PSLs(C) provides a natural compactification of so(H3\ £),
and K extends smoothly to U x (so(H3\ £) U s¢(L)) (we also denote the extension by K).

Note that the generators L,(u) of 'y, r = 1,...,g, can be considered as giving holomorphic
functions

L, : U — PSLy(C).



TAU FUNCTION AND CHERN-SIMONS INVARIANT 21

We let D be a fundamental domain for the action of I" on H3, such that 0D C H? consists
of 2g smooth surfaces D,, —L,(0)D,, for r = 1,...,g (the negative sign indicates opposite
orientation). Define D,, := f, (D). Considering H? as {(t,z,y) € R3|t > 0}, define D and C,
to be the intersection of the closure of D and D, respectively with the set ¢ = 0. Then D is
a fundamental domain of the action of I on €, 9D consists of smooth curves C,., —L,(0)C,,
and we define D, := f,(D). We denote D’ := D \ £, and define A := s¢o(D’). As above,
the closure A of A in PSLy(C) provides a natural compactification of A. Let T, := so(D;.)
for r = 1,...,¢. The boundary components of A consist of B’ U B' U B? as defined in the
subsection B2, and U_, (T, — L,(0)T;). We denote by D¢ and A the subsets of D and A
respectively corresponding to M€. Define D¢ := D N P¢(D). The boundary components of
A° consist of B% U B' U B> and U?_,(T¢ — L,(0)T¢) where B%¢ is diffeomorphic to BY,
and B%€ and U?_, (T€ — L,(0)T¢) are subsets of B? and U’_, (T, — L,(0)T}) respectively. The
notations D!, A,, etc. denote the corresponding constructions for D,,.

Since we will always be working in a fixed fundamental domain D,,, from now on, we will
write £, = L1 UL2 to mean the intersection £, ND,. The boundary points of L. U L2 consist
of finitely many matched pairs y;(u) and L,;(u)y;(u), j € J, together with 2g — 2 points
which are the zeros of the holomorphic 1-form ®,. We may assume that every curve in L.
has exactly two points y;(u), L,;)(u)y;(u) in its boundary, and we assume the orientation of
L} given by the reference framing « is such that the component connecting L,y (uw)y;(u) to
yj(u) is oriented towards y;(u).

Under the canonical map from 7:[;(1, ..., 1) to G4, a holomorphic tangent vector w in T’ Loy

at ug maps to a holomorphic tangent vector in T 1’06g, which corresponds to a harmonic
Beltrami differential g € H~51(Q,T). Then p defines a quasi-conformal mapping fuwp
X — X, for all w in some neighborhood W of the origin in C. There exists a holomorphic
family {®(w)}, where ®(w) is a holomorphic 1-form on X, such that the derivative at wug
of the complex curve in U given by the family {(X,, ®(w))} is w. (Here we are using the
local isomorphism of 7—2;(1, ...,1) and 7:19(1, ...,1).) In this way we obtain a complex curve
u: W — U, such that g—g} = w and g—g = 0 (with w a local coordinate in W).

For the curve u : W — U we define f : W x Q — C by f(w,2) = fy@w)(2) = fuu(z) and
f:=W x H® — H? by f(w,x) = £,(,)(z). We also define

H=Ko(u,id) : W x (sg(H3\ L) U so(L)) — PSLs(C),

and
o=s0(u,f): W x H> = PSLy(C).

5.2. Contributions of boundaries. For technical reasons we consider the holomorphic vari-
ation of CS rather than CS. o
To derive a variation formula for CS, we start with the following equality:

/ / !/ !/
0= [ H*dC— / (dw +d)HC=dw | HC—- [ HT
A€ A€ A€ N
(5-2) ! . ! o g / .
=dy | H*C — H*C’—Z/ H*C.
A° BY.cUBlUB2:¢ 1 T~ L T¢

Here the notation fée denotes the partial integral: we consider the integrand as a form on A
taking values in forms on W, and integrate over {w} x A, obtaining a 1-form on W. The
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notation d = dw + da denotes the splitting of d on W x A in the obvious way. Note that
we use the orientation from W x A; for this reason, we have dy ée H*C = ée dwH*C,

but when we apply Stokes’ theorem, we have fée dAH*C = — /. E;F H*C. We use a similar
convention for partial integrals throughout this section.

The next three lemmas deal with the partial integrals | ]/31 H*C, |, ]/32,5 H*C, and | éo,e H*C
respectively.

Lemma 5.1. Let u : W — U be a complex curve as defined above, with w € W. Then we
have the following equality of 1-forms over W :

/ /

— 1
HC — —dw o (01 4+ ib23) = —— Z 91 + i623) ‘
Bl 2 Ll
yeaﬁl

Proof. Recall that the integral over B! is independent of € for small € > 0. As in the proof of
Proposition [4.6] we have the diffeomorphism
VW x L xSt — W x B!
defined by
Y(w,y,v) = {w} x H(w,-) " (e1(y), cos(v)ea(y) + sin(v)es(y), —sin(v)ea(y) + cos(v)es(y))

forw € W, y € £! and v € S*. The notation H(w,-)~! denotes the inverse of H(w,-)

restricted to its image. The orientation of £! x S' is given by (Q 8@). As in the proof

of Propositions [4.5] and [4.6] we have (¢*H*6 )( =) = (Q,Z)*H*Hll)(ag) 0 (i =1,2,3) and
(* H*023)( v) = —1. Tt follows that

1 )
T,Z)*H*C = —4— *H*(d(91 A 923)) — @ *H*(923 VAN d923).

Let g: W x £ x S — W x L' be the natural projection. Then
¢*H*923 = —dv + q*0*923.

It follows that ¢* H*(023 A dfa3) = —dv A d(q*0*023). From the above orientation convention,
by Stokes’ theorem, we have

L /l Y H" (d(6h A Oa3))

472

L1x S
1 ! 1 [
—d *H*(01 N0 *H*(01 N0
(5.3) =2 clxslw (01 A O23) = 5 /aclxslw (61 A 023)
1 ! .
:—%dw 091+2—2091|y
yeoLl
and
1 /
o2 Y H* (023 N dba3)
78 L1x st
1 [ 1 [
- — dv A d(q*0*0s3) = —— [ d(o70
(5.4) 12 /Elxsl v A d(q 0" 03) o7 /o (0%023)

:——dw/ 0923—1—— Z 0923|y

y€8£1
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Combining (5.3]) and (5.4]) proves the lemma. O
Lemma 5.2. We have the following equality of 1-forms over W :
/! /
¥ .1 X .
lian ( B“H C+ —dW .0 o* (01 + ifa23) ) = lim —— > 001 + b))y

Proof. We define the map H : W x B2 — B2 by H = A~' o H o (id, A). ‘As in the proof of
Propositions @5 and 6] by (48) and (ZI3) and denoting A~ (B?*€) by B,
/ / !
HC= [ (id AHT= W AT
B2¢ B2¢ l:2'€><sl
1 ' * TT* .k Tk
= — F v H (d(91 A 923)) + " H (923 A d923)
7 L£2.ex 81

1 ' * TT* :
s /52 o v H d( E 0; A (aleg ~dA3 + aj2Asz - dAy + aj3A; 'dAQ))
1€ X j:1

1 ! ~ A A A A A A
- / Z¢*H*d(912 ANdAy - Ay + 013 NdA1 - Az + 023 A dAs - Ag)
47T2 [2ex 81

1 /[ T .5
-— —*H*Tr((A71dA)%).
47T2 /(:2’€XS1 w r(( ) )

By " H*(6;)(5;) = 0, " H*(6)(5;) = 0, v*H*(dA;)(5;) = 0, and ¢*H*(dAy)(F;) = 0, all
the integrals vanish except the integral of ¢* H*d(033 A dAy - Ag) for the terms on the last
three lines of the above equalities. But we have the following equality:

1 ! - . .

— *H*d(63 NdAy - A

472 /ﬁzexsqw ( 2 2 3)
/

:—dW W H*(dAs - Ag) — — Z Y H*(dAs - A3)l,.
L2e yeaL2e

The first term in the second line can be shown to give the variation with respect to w of the
sum of the total rotation angles of Ay around A; along the components of £2¢. But by our
assumptions on the framing, A limits to the identity at the boundary 9£2 N D. Hence the
limit of this term as € — 0 gives an integer, which is invariant under the deformation. The
last term is 0 since the contributions from boundary points in the interior of M cancel by
an invariance under identification by the L,(u(w)), and at the remaining boundary points,
Y*H*(dAy - A3)|, — 0 as € — 0. From these equalities, we have

’ /
lim H*C = lim —L / ¢*I~{*(d(91 VAN 923)) + Z¢*I~{*(923 A d923).

€e—=0 JpB2,e e—0 471' [2,6xG§1

Now, repeating the derivation in (5.3]) and (5.4]) and recalling that ¢ is an orientation reversing
diffeomorphism in this case, completes the proof. O

Now we deal with the partial integral over B%¢. Recall that D€ is the subset in D = Dy
corresponding to X€. First we have
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Lemma 5.3. We have the following equality of 1-forms on W :

! - ! -
H*C:/ o*C

BO,e De\ﬁ
1 ! . . .
=12 (dpwas A (x1 +ix23) + w23 A (dp(x1 +ixas) + idwwas) )
47 (De\L)

where d = dw + dp over W x D¢. Here x1 and xa23 are defined by o*0y = wy + x1 and
0023 = waz + X23, where wi|rw = waz|lTw =0 and x1|Tpe = X23|T7Dc = 0.

Note that w1, waes, x1 and x23 depend on w € W.
Proof. By Proposition [£.2] it is easy to see

c*C = — m(d(wgg + X23) A\ (wl + twos + x1 + ngg))

1 . .
+ 4—7T2(d(w1 +x1) A (w1 + iwaz + X1 +ZX23))-

Now, note that dpw; = 0 by Lemma4] and that w; vanishes on tangent vectors of (D\ £).
Also note that

/ / /
0 =dw w3z Awy = / (dwwaz) Awi — / waz A (dwwr),
DL DL DL

so [ II)E\ w23 A (dwwi) = 0. Now, recalling that the orientation of D¢ is opposite to that of

B%¢_ the result follows from direct computation. O

5.3. Limit of contribution over B%¢. Now we want to push the expression of Lemma [5.3]
down to the boundary D C C c 9H3. This will be accomplished in Proposition 5.7 First we
need to prove some preliminary results, which will also be useful later.

By the uniformization of X by I', we identify X with I'\Q2. Then the hyperbolic metric gx
of constant curvature —1 on X (or the flat metric gx of area 1 in the case that X has genus
1) gives a metric e?(*)|dz|? on Q, invariant under the action of I'. The invariance implies that

(5.5) ¢(2) = ¢(7z) +log |/ (2)?
for all z € Q and v €T

Proposition 5.4. The set D¢ in H? is given by D¢ = { (t,z,y) € H3|t = t(e,z,y) }, where
t is a function satisfying
o(x,y)
tez,y) =ce 7 +heay)e,
where k, ky and k, exist and are bounded on D U D.

Proof. Let us recall that there is a unique defining function 7 over a collar neighborhood N
of X in M such that the rescaled metric g := r2gys extends smoothly to M, its restriction
to X is the hyperbolic metric gx and |dr|§ = 1. Let us denote the lifted defining function

over the inverse image of N in H?3 by the same notation r, and write 7 := 7. Then the

. _ . o . N L)
three conditions on g imply that 7 extends smoothly to D U D, limy_,o 7(¢,z,y) = e2, and
Peo= —3(F7 + 72 + fg)f_lt respectively. Since || < Ct for a uniform constant C, we have
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” ) . P . o ) .
|(? —e2)¢| < Ct. Since 7 is smooth on DU D, this means |#—e2 | < Ct? for a uniform constant
C, and therefore

(5.6) P(tz,y) =e 2 +altay)t,

where « is uniformly bounded.
Similarly, since 74 = 0 on D, we have 7,y = 0 on D. Again, since 7 is smooth, we obtain
o @ . .. .

|(# — e2),| < Ct? for some uniform constant C. This implies

~ (x,y)
Tx(t,x,y) = (e 2 )w + am(t,:n,y)t2

where o is uniformly bounded, and similarly for #,. This implies the claimed expression for

. _¢._ ~ -
t. Now, since k = —ae~ 2773, and 7 is nowhere zero on D, the result follows. O

A holomorphic 1-form ® with only simple zeroes over X is given by h(z)dz over Q with
h(vz)Y(z) = h(z) for v € T. The phase function ¢?(*) := h(z)/|h(z)| is well defined over

O\ UyervZ where Z := {21,...,224—2} denotes the zero set of h(z) in a fixed fundamental
domain D of I'. The transformation law of h(z) implies
: : V(=)
(5.7) i0(z) = i0(vz) + log
v (2)]

for v € T. Note that 6 is defined only up to an integer multiple of 27. By (B.5)), (B.7), it
follows that e?(?)/2+0(2) 4> — )y + jwy is invariant under the action of I'; in particular,
wa = %/%(cos Odx — sin Ody), w3 = e?/2(sin Odx + cos Ody)

provides us with an orthonormal invariant co-frame (wa,w3) over Q\ UyeryZ. Now we obtain
an orthonormal framing

Fo = (fo, f3) where fo = w3, f3 = w3
over D' :=D\ Z.

Near a zero z, € Z, h(z) has an expression h(z) = (z — z;)hi(2) such that hy(z) is non-
vanishing at zz. Now we put e() := hi(2)/|hi(2)|. Since hy(z) is non-vanishing at z = z,
0r(21,) is well-defined only up to an integer multiple of 27. As in (&), we define

@ = e??(cos(0;/2)dx — sin(fy/2)dy),

5.8 - ~
(58) @3 = e?/?(sin(0y,/2)dx + cos(0y,/2)dy)

at zp € Z. Then the duals ( fg, fg) of (&9,w3) define an orthonormal framing at z; € Z. That
this orthonormal framing is well-defined up to sign follows from the fact that h(yz)y'(z) = h(2)
and the from the following equality for v € " and z, 2z, € (:
1 1
(vz = var) = (2 = 2k)72(2) 272 (20) 2.

Proposition 5.5. The one form wo3 on D’ extends smoothly to a form on D'UD’'. We have

. 1 . . _
%1_{1(1]0‘)23 =3 ((¢ —2i0).dz — (¢ + 2i6)zdz ),
where the convergence in the global coordinate on H3 is uniform on D' U D’.

Note that the extension of wez to D’ coincides with the connection form of the hyperbolic
metric e?|dz|?, with respect to our choice of orthonormal frame Fg.
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Proof. By the Koszul formula, we have

waz = g([e2, e3], e2)wa + g([e2, e3], e3)ws

for an orthonormal frame (eq, ez, e3) where ey is orthogonal to T'D€. By the asymptotics of
the boundary defining function r in (5.6]), we have

er = t(1+162(02 + ¢62)) % (htuls + Sty 0, + 0) + O(1%),
€2 = (2263 + (3€3, €3 = (3262 + (133€3
with
& = t(1+ 1202)72 (9, — 3t6,0) + O(F®), & = t(1+ 2%02)72 (9, — Lt¢,0;) + O(t%).
Here and below, we use O(t*) to indicate a function of the form a(t, z, y)t* with respect to the

global coordinate on H?, where a is uniformly bounded in D’ U D’. To compute g([e2, 3], €2),
9([ez, es], e3), we consider [es, e3] first. By an elementary computation,

[e2,e3] = (2033 — azzasz)(é2, €3]
(5.9) + (2282(ag2) — asa@a(i22) + agzes(asz) — assés(ane) ) e
+ ((a2282(0r33) — (usa@2(cz3) + vz (ausg) — azes(orzs) ) es.
Using Proposition 5.4 we have
(62, &3] = (5°¢) 0 — (51°¢2)0y + O(?),

from which we also have
9([E2, €3], €2) =ana(31¢y) + azs(—35tes) + O(t%) =
9([E2, &3], €3) =asa(5tdy) + ass(—3tes) + O(t?) =

Here we used the fact age = a3 = cos 0 + O(t), ang = —age = —sinf + O(t). Denoting by E
the sum of the terms in the second and third lines on the right hand side of (5.9),

g(E,e3) = —t(cos 00, —sind6,) + O(t?),
g(E,e3) = — t(sin0 0, + cos 0 6,) + O(t?).

t(cos 0 ¢y + sinf o) + O(t?),
t(sin @ ¢, — cos 0 o) + O(t2).

Finally we need
wy =t~ (cos Odx — sin Ody + O(t)), wy =t~ (sin @dx + cos Ody + O(t)).

Combining all the proved equalities, we have
1 1
wog = (5 cos 8 ¢, + 3 sin @ ¢, — cos 0 0, + sinh 6,)(cos O dz — sin 6 dy)
1 1
+ (5 sin @ ¢, — 5 cos 0 ¢y —sinb g, — cos 6 0,)(sin 0 dx + cos 6 dy) + O(t)

1
=df + §(¢ydx — ¢zdy) + O(2).
This completes the proof. O

Now, we define ¢; = Xl(a%) and co3 = ng(a%), where y; and o3 were defined in Lemma
6.3, and w is a local coordinate in W. We will write ’ for the derivative with respect to w,
for instance, ¢’ = a%qﬁ.
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Proposition 5.6. The functions c1,co3 on W x D’ extend smoothly to functions on W x
(D'UD’). We have

limey = —3d/o . lmex =00 f+i( —i0).f"
and the convergence in the global coordinate on H3 is uniform on D' U D'. We also have
limg 0 x1(7%) = 1, limy_y0 Xx23(3%) = é2s.
Proof. Observe that c¢; is given by

(50 () 01 () = a(s.te ) + 500 (Frn ) = wn(F),

where the second equality holds since s*u*a% is vertical. Recall that the level surface D¢ is

given by { (t,x,y) € H3|t = t(e,z,y) = ee” s O(€®) }, and that the definition of f near

the boundary given by (B.1]) involves translation along gradient curves for r. Since translation
from D to D¢ introduces an error of O(€?), and since f, and f, are bounded on D, we have

f(w, (t,2)) = (t(r(t,z),f(z)),f(z)) + O(t2).

Here and below we understand O(#?) to be uniform as discussed in the previous proposition.
Therefore we have

' =f L — (Lt(¢ o f+¢.1)) & + O?).
The one form w; is the dual of the first component e; of the orthonormal frame over the level
surface D€ so that

wi = (1+ 1202 + ¢2)) "2t  (Mtd.dz + Ltg=dz + dt) + O(t%).

Hence, we have

1 1 1 1
() = 56.f" = 580 f = 50.1' +0(t) = —5 o [ + O(1)
from which it follows

1
(5.10) limc; = limw (f') = —=¢' o f.
t—0 2

t—0
As above, co3 is given by
(50 (u,£))*023(2) = O23(55us 2 ) + 5 O3 (e ) = Oa3(s") + was(F).
Now, we have b3 = L}_ (—=2(¢h)*) and limt_,o(ﬁg)*s*u*(%) = —30,(ih), where h =

(6 %) € slh(C) and L, is the left translation by g € PSLy(C) (see Section 3 of [18]).
Hence,

(5.11) lim co3 = lim (23(s") 4+ was(f')) = 6" o f + z'(? —i0).f.

t—0 t—0 2
The equalities (5.10) and (5I1I]) complete the proof of the first two equalities. Replacing a%
with % in the computations above gives the last part of the statement. O

We denote by the same notations ws3, c1, c23, the restriction to W x D’ of the extensions
of w3, ¢1, ca3 respectively, obtained in Propositions and

Now let us introduce some additional notation. The local coordinate expression for the
members of the family {®(w)} can be identified with amap h : {(w, Q) : w € W} — C. We
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define z; : W — C to be the coordinates in €2, of the zeroes of ®(w), that is, h(w, 2, (w)) = 0
for all w € W. Near each z,(w), we define hy, by

(5.12) h(w, f(w,2)) = (f(w,2) = fw, z(w))) hi(w, f(w, 2))
for all w € W.
Proposition 5.7. The limit of the 1-form

!/

(5.13) lim H*C

e—=0 JpBo,e

over W is finite, and its (1,0) part equals
1 /
an2 |p

(5.14) (dDWQg A (e1 + ica3)dw + was A (dp(c1 + iceg) A dw + i0ywa3) )

where d = dyy + dp = Oy + Oy + dp over W x D.
Proof. We have that

/ / /

lim H*C = lim H*C =1lim [ P's*H*C.

e—=0 JBo,e e—0 s(Pe(D")) e—0 Jpr
Propositions[5.5land[5.6] and the definition of admissible singularity, show that s* H*C extends
continuously to D’, and is uniformly bounded. Therefore we can exchange limit and integral
in the last integral. Hence, the integral (5.14)) equals the (1,0) part of (5.13) by Lemma [5.3]
Propositions [5.5] and Now we prove the integral (5.14]) is finite. By equation (5.12]), near
21 € Z we have

(e1 +iexs)(z) = = 5 (6~ 26) 0 ) (2)
:%f,(z) B f/(zk‘z_ fz(zk)(zk), o %((qﬁ—logﬁ) Of)/(Z).
z Zk

Note that dpwag is a constant times the volume form and ¢y + icog is singular at Z by the
above equality, but its wedge product with the volume form is integrable. For the second
term, we use the following formula,

dD(Cl + iCQg) A dw + 10yywas
= —(¢zo ff.+ o fF.f)dz Ndw — (¢ o ffz+ bz o ff=f)dz A dw
where ( = f(z), which can be derived from Propositions G5 and Although wog is singular
at Z, its wedge product with the expression above is integrable. This shows that the integral
(5I4)) is finite, hence (1,0) part of (513) is finite. Similarly, the (0,1) part of (5.13) is equal
to the complex conjugate of (.14]) and is therefore also finite. O
5.4. Holomorphic variation of CS. We begin this subsection with
Proposition 5.8. OQver W C C, we have
!
— — 1
dwTS)= | HCT—-= > 0" (01 +ib3)|

0 2 Y
B yedLt

1 . . g ! —
+ 5o 20(91+z92g)|y+;/r H*C.

yeaL? LTy
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Here the sums over OLY and OL? are taken with signs inherited from the orientations on L1
and L2

Proof. First, note that lime_,o dw (u*CS®) = dw (u*CS) since the diverging term Z(1— g)loge
in Definition A8 vanishes under dy,. By Proposition [.7, the partial integral over B%€ in
converges to a finite limit as ¢ — 0. By Lemma and a similar analysis in the proof of
Proposition 5.6 the right hand side of the equality in Lemma 5.2 also converges as ¢ — 0.
Hence this is also true for the last terms in (5.2)) given by the sum of the partial integrals over
(T — L, Tf). Taking ¢ — 0 on both sides of (5.2]), and using Lemmas [5.1] and [5.2] we have the
result. O

The remainder of this section is devoted to finding an explicit expression for d CS(w) in
the case that @ € T"°U at ug is a holomorphic tangent vector. The final result is given in
Theorem .14

Lemma 5.9. For the holomorphic curve u : W — U, we have
o (61 + i023)|yj(0) —o* (01 + i023)‘Lr(j)(u(0))yj(0) = —(Lr(j) ou)* (6 + i623)
where (Ly(jy o u)*(61 + i023) is a (0,1)-form on W for j € J.

Proof. For brevity we write L,)(w) = Ly (u(w)) and y; := y;(0). The map w
o(w, Ly;)(0)y;) = Ly (w)o(w,y;) is the composition of the maps

a(y;)

W LXMW b1, (C) x PSLe(C) S PSL(C)

where G denotes the multiplication map. Since 0 +ifa3 is a bi-invariant 1-form on PSLy(C),
we obtain G*(61 + i023) = pj (01 + i023) + p5(01 + i023) where p; denotes the projection onto
i-th factor PSLy(C). It follows that

o (Ly(j)(0)y;)*(01+i023) = ((Ly(jyou)o(y;))* (01+ib23) = (Ly(jyou)* (01+i023)+0(y;)* (61+i023).

Hence,

O'*(91 + i623)|yj — 0o (91 + i623)|Lr(j)(0)yj = _(Lr(j) o u)*(@l + i@gg).
Since L,jyou : W — PSLy(C) is a holomorphic map, and 6y + il is a (0,1)-form on
PSLy(C) (see the section 3 of [18]), the statement follows. O

Lemma 5.10. The partial integral > 9_, ff}r—LrTr H*C is a (0,1)-form over W.

Proof. For each w € W and x € D",
H(w, so(Ly(0)x)) = s(u(w), f(w, Ly (0)x))
= s(u(w), Ly (w)f(w,z)) = Ly(w)s(u(w),f(w,z)) = Ly (w)H(w, so(z)),
where L,(w) := L,(u(w)). Hence H : W x L, T, — PSLs(C) can be considered as the
composition of the maps

W x T, 225 PSLy(C) x PSLy(CT) S PSLy(C)
where (L, x H)(w,so(z)) = (Ly(w), H(w, so(z))) and G denotes the multiplication map.
The pull back of C by G is given by G*C = piC + (G*C)*! + (G*C)Y? + p3C, where
pi : PSLa(C) x PSLy(C) — PSLy(C), i = 1,2, are the projections from the two factors, and
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where superscripts on a form indicate the degree in the two factors. Taking the pull back of
G*C by L, x H, we have

(G(L, x H))*C = L:C + (L, x H)*(G*C)*! + (L, x H)*(G*C)"? + H*C.
Hence we have the following equality for the partial integrals:
/ / /
H*C — H*C = — / (L, x H)*(G*O)™2.
Tr L.TT T

Since the map w € W + L,.(w) € PSLs(C) is holomorphic, the dw term in (L, x H)*(G*C)'?
vanishes under the above partial integration. Hence the 1-form on W obtained by the partial
integration of fj/ﬂT_LTT,. H*C' does not involve dw, that is, it is of type (0,1). O

~ From now on, ° will denote the derivative with respect to w at w = 0, for instance,
= -2| _¢. By the results on varying the hyperbolic metric in [I], we have, for all z € Q,
w=0

ow
(5’15) ¢+ ¢.f+ f=0.
(The same is true for the flat metric of area 1 in the case that the genus of X is 1.) From
this, we also have

Since 2if = log h — log h,

5 Hzg - 0

=3

(5.17) 20, = %’ 2i0, = —

Since @ is a holomorphic family, we also have

(5.18) 0z = 0.
It will be convenient in what follows to make the definition v := ¢ — 2i6.
Lemma 5.11. The following terms are invariant under the action of ',
—f2 = (2i0) = (2i0)f =) + . f.
Proof. The equality follows from ¢ + ¢.f + f, = 0. To see the invariance under the action of
I', we note

(¢ —2i0) (2) = (¢ — 2i0) (v2) + (¢ — 2i0).(72)7(2),
(¢ —2i0).(2) = (¢ — 2i0).(y2)7=(2),

which follow from (55) and (5.7). Combining these and f oy = 4 + 7.f completes the
proof. O

From now on, for convenience, we abbreviate z;(0) to zj, and 24(0) to 2.

Proposition 5.12. For w € TYOU at ug € U, we have

— 1 ) . .
8@8(@') = H /D dwaz N\ (Cl + 2623) + waog A (d(Cl + 2623) — ngg)

- ﬁ EE:Z (f-+ %(log hie) + %Oog hi)ef = (6~ %log e ) ()

where Z denotes the set of zeros of ® in the fundamental domain D of T' and hy, is defined

by equation (512)).
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Proof. By Proposition 5.8 and Lemma[5.9, 0 CS(w) is equal to the evaluation of the one form

/
— 1
H*CH+n(j)— L,you)* (0 +1i6
. (])%g( () © w)" (61 + i023)

1 i} ‘ g /
+% Z 0(91+2923)‘y+;/(r

H*C
ye(dL2ND) )

—L. T,

on %. Here n(j) is the index of the singularity at the corresponding component of L, so

n(j) = 1 or —1 if the points y;(0), L,;)(0)y;(0) are in oL or OL? respectively. By Lemma
(.3 and Proposition [5.7] the evaluation of the first term on a% is given by

1 . . .
m / dwaoz N (61 + 2623) + waog A (d(61 + Z623) — Zw23).
D

The second and fourth terms vanish on %, since they are (0,1)-forms by Lemmas and

(.10, Using Lemma 5.2 and following the proof of Proposition 5.6, we find that the third

term evaluated on % is given by

(% Z U*(91+i923)‘y>(8%)

ye(8L2ND)

LN (6= i)+ (6 — 0. f + (6 — i) St ) (20)

Tar
z2L€Z

1

A
EINYA

Here the last equality follows from (5.8]) and (5I5]). This completes the proof. O

( - fz - %(IOg ilk) - %(IOg }le)zf + (¢ — %lOg ilk)zfzzk ) (2k).

Proposition 5.13. The following equality holds:

1 ) ) ..
F / dwas A (Cl + 1023) + waoz A (d(Cl + 1023) — Zw23)

™ JD
_ L : . 1 2 op2 o 2
== g lim [ (0= 502202 < 2i0.p 5

1 : . - 8 _
~ i (2f. + (log hi) + (log hy) - f + (¢ — log hi). f-2k ) (21),
z2L€Z

where Dy is a subset of D whose §-open neighborhoods of Z are removed and d*z = %dz NdZ.

Note that, since circles are preserved under holomorphic change of coordinates, the limit
as 0 — 0 is independent of the choice of local coordinates.

Proof. By Proposition [5.6]

c1 +icgy = — %(?ﬁof)'
(5.19)

:_%(¢3+¢Zf’—2i9—2i9zf):(ié—l—iezf-l-%f;z)
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where we used (5.15) for the third equality. From (5.19]), we can also derive

(5.20) d(cy + icos) = —%( (V2 + Yoz f + Vfo)dz + (V2 + Yoz f + 0o fz)dZ).
By Proposition (5]

- 1, . . . - . .
(521) —wW23 = 5 ( (¢z + Y. f + szfz)dz + (_¢2 —Yuzf + ¢zf2)dz)-
Again by Proposition [5.5]
dwog = —i¢,zdz NdzZ = —i),zdz N\ dZ.
Combining this and (G.19), (5:20), (5:21)), we get
) 1.
dwas A (Cl + i623) = —i¢zg(i9 +i0,f + §fz)d2 A dZ,

which is an invariant (1,1)-form under the action of I' by Lemma [5.11] and

waz A (d(c1 + c3) — ithe3) = —%’T/Jz(qaz + ¢ozf)dz N dz = %T/Jz(@fz + faz)dz Adz

where we used (5.16) for the last equality.
By the above equalities,

/ dwas N (¢ +iceg) = zpzz(w +i0, f + = fz) dz Ndz
Dg Ds

(5.22) V. (i, f= + fzz) dz Ndz +i V. (10 + 0, f + 5 fz)dz
D5 8D5

. . . 1. 1 .
:i/ (1,16, — —¢Zz)f5 dzNdz +1 V(10 + 0, f + = f.)dz + =), fzdZ
Dy 2 ODs 2 2

where 0Ds has the induced orientation from Djg. In the integral over 0Dy, the contributions
from C" and —L,(0)C" cancel, since the integrands concerned are invariant. We also have

/ waz A (d(c1 + c23) — ite3) = . Vs (bafz + foz) dz N dZ
(5.23) Ds 2 b

i : _ 1 s
:5 /[)6 (¢Z¢Z — ¢zz)f2 dZ A\ dZ + 5 szfgdz,

dD;
where once again the contributions from C" and —L,(0)C" cancel in the integral over 0D;.

By G.19), (.22) and G.23),

/ dwaz N (Cl +ico3) + wag A (d(c1 + i623) — i93)

Ds

(5.24) ; ) . ; .

:—/ (Vo10, — 2,) fz dz NdZ — = Uy (Yof)dz+i Y, fzdZ.
2 Ds 2 ODs 0Dg

For the last integral on the right hand side of (|5:2E) we have

i zpzfzdz——zZ/ + (¢ —loghy), ) fzdz

ODg ez |z—zk|= 6 Z_Zk

(5.25)

:—z’Z/ Ié—z_Zkfgdé—i—O(é):O(é).

z2L€Z
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To analyze the second integral on the right hand side of (5.24]), we use (B.12]). This implies
that, near z; € Z, we have

F(2) = fz) = f(20) 2

Z — Zk

(5.26) ((¢—2i0) 0 f)(z) = - +((¢ —loghg) o f)(2).

Therefore, we can rewrite the second integral of (5.24]) as

— o w200 fyas

dDg

=3/ PRSI (O R (Y e ACA LA
sz|6 Z—Zk

zZ—Z
zLE€EZ k

1 7 7 .
—i—/z Zk|_5(_ +(¢—loghk)z)(((ﬁ—loghk)of)(z))dz)

Z— Zk

=—m Y (folzr) + (¢ —log hx)z(2k) f= () 2 — (¢ — log hx) © f) (zk) ) + O(6)
2L€EZ

=—7 Y (2f: + (log hy) + (log hy) f + (¢ — log ) f22, ) (21) + O(0).
2L€EZ

Combining this with (5.24]) and (5.25]), we conclude

lim dwag A (c1 +icas) + wag A (d(c1 + ica3) — iwas)
6—0 Ds

=lim [ (¢? — 2., +40% 4+ 4i6,.)f- d*z
6—0 Ds

-7 Z (2fz + (IOg Bk)“‘ (lOg Bk)zf + (¢ - IOg Bk)zfz«ék ) (zk)

2KLE€EZ

Recalling that fé = u completes the proof. ([l

Note that we have the formulas

_ 1 h.: 302 ,
S(J 1) = ¢zz - 5(2527 S(hCI>) h - 5@ = 292 + 22922

where S denotes the Schwarzian derivative, J : H?> — ) is the universal covering map of €,
(or J: C — Q in the case of genus 1), and hg is a multi-valued function such that dhe = ®.
By these formulas and Propositions [5.12] and [5.13] we have the following theorem.

Theorem 5.14. For @ € TYOU at ug € U, and the corresponding u € H~1(Q,T),

— 1 _
0CS(w) = — 55 lim . (S(J 1)—S(hq>))ud22

37 (34 S oghu) + Slog n)of — S(ogTa) Lot ) ().

EINYA
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Corollary 5.15. For @ € TYOU at ug € U, and the corresponding u € H™11(Q,T),

2CS(w) = 4725&% . S(ho)pd®z
3, - . 1, = ,
- Z 3f. + 108“ hi) + (loghk)zf - 5(10?; hie)=f2k ) (2k).
ZkEZ

Proof. This follows from directly from Theorem [5.14] since we have

1
(CS(M)(, qu) = FW(M) + QiCS(Mx, qu),

and, by [13], [21], it is known that OW = 1¢% — 2¢.. = —3S(J71). O
6. REGULARIZED POLYAKOV INTEGRAL OVER X

In this section, we introduce an regularized integral defined in terms of the metric gx and
the holomorphic 1-form ® over X. We assume that gx is the hyperbolic metric if the genus
of X is greater than 1, and the flat metric of area 1 if the genus equals 1. We assume that ®
has only simple zeroes and we denote by Z its zero set.

Now we define

[(X,@)—hm(/ .2 d2z + & Z/ ¢_2,1°g,‘h’)(z)dz)

(6.1) Snep s T

— 7 Y (¢ — log | h|)(z)-

PLEZ

Here z, in the integral around py, represents a local coordinate near pg, with zx = z(pk).
The set X5 denotes the complement of §-open discs |z — zx| < J centered at each z; € Z in
X, and Ss(zx) denotes a part of 90X which is the d-circle centered at z; with the induced
orientation from Xs. Note that each of the terms in (6.1]) are independent of the choice of
local coordinates, by the transformation laws given in subsection Note also that, since
circles are preserved under change of coordinates, the limit as § — 0 is independent of the
choice of local coordinates. Hence I is a well-defined function on #H,4(1,...,1).

Suppose that @ is a tangent vector at ug € Hy(1,...,1), and that U is a neighborhood of
ug. We define a corresponding curve u : W — U, for W C C, and a corresponding deformation
map f(w,-) : X — X, for each w € W, in the same way as in subsection [5.Il We also define
the local coordinate expressions h, hj and zj, in the same way as the discussion before the
equation (B5.I12)), except that here we do not assume a global uniformization coordinate, only
local coordinates near the zeroes of ®. For convenience we abbreviate zx(0) to zj, and 2;(0)
to z.

Theorem 6.1. For @w € TVOH,(1,...,1) at the point (X,®) and the corresponding p €
H_I’I(X),

OI(w) = 2 lim (qﬁzz — lqsg — 202 — 2i0,, )ud*z
6—0

+wz 3. + o (oghg) + o (oghg). f — 5 (log ). F-28) ().
PREZ

Here ¢, — %qﬁg —20? — 2i6,. is a meromorphic quadratic differential over X .



TAU FUNCTION AND CHERN-SIMONS INVARIANT 35

Proof. The domain X,, s is given by deleting the d-discs centered at the f(w,z,(w)) for
2 € Z. Its boundaries are given by the circles Ss(f(w, zx(w))). Now we consider the pre-
image domain, denoted by the same notation, of X, s by f, in X which has boundaries
denoted by Bs(zi(w)). Let us take 0y such that the dp-disc centered at zj contains Bs(zx(w))
for each 2z, € Z, and take w in an open neighborhood W of the origin in C. Then X, 5 in X
decomposes into X5, U As, 5. Here Asy 5 = U, czAs, 5(2k) where the region As, 5(z) has two
boundaries Ss,(z) and Bs(zi(w)).
For the integral |1, |2d?z over As, s, we have

/ W}z’2d22

Asy,8(21)

R =
As0,5(21) Asg,0(z1) z = zk(w) Asg.s(2k) z — zp(w)

- [ e-whg el [ L2, 2 o2l g
Aso (a1 2 9450,5(zp,) Z_zk(w) 2 0Asq,5(2k)

Z—Zk(w)
Hence,
[y [ i,
Xuw pkEZ Bs (21 (w)) z — Zg(w)
~ , _l 7
A N N e e
(50 A(5075 2 0As, s z_zk(w)
¢ — 21
+ = Z/ &dz
PLEZ S‘SO Zk Z—Zk )

where Bj(2;(w)) and Sj,(21,) have the orientation induced from As, 5(21) and X5, respectively.
Now, we consider the holomorphic variation of each of the terms on the right hand side of
([6.2)). First, we deal with the term I, = | Xs |,|? d?z. For this, observe that
0

0u(V2dz) = (s + 9oz f)dz + vu(fadz + fdz),
6u(¥zdz) = (vs + 1Ezzf)dz = (¢2 + ¢zzf;)d5-
Here, 6,, denotes the Lie derivative. See Section 2.3 of [I5] for details. Combining these facts
with (5.16) and Lemma [5.11] we have
a[&) (w) = = ) wz(¢zf2 + sz) dz Ndz
X5,
(6.3) ; o .
-5 Vs(far + (200). + ((2i0).f).) dz A dz.
2 Jx,,
Let us denote the two terms on the right hand side of (6.3]) by (915, (w)); for i = 1,2. Recalling
that 1, fzdz is an invariant (0, 1)-form, we have

(8150(77]))1 = _3( wz¢zf2 dz Ndz — wzzfé dz Ndz + wzfz dz )
27 Jxy, Xs, 0Xs,
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where 0Xj, has the induced orientation from Xj5,. For (015,(w))2, by Lemma [5.1T] and (5.17]),
©.13),

(015,(w))2 = %( s Voz(fo + (200) + (2i0). f) dz A dz
— b + (2i0) + (2i0).f) dz )
X5,
:_%( wz(fzz+(216)zf2 ) dz N dz
Xs,

+/ (f + (2i0) + (2i6).f) (v=dz + P2d7) ).
0%,

Dealing with the term 1, f,z as before,

(013 (@))2 = —=( 0. (2i0), fs dz NdE— | unfs dz AdE
27 Jxs, Xs,

+ mﬁw+/ (f= + (2i0) + (2i0). f) (¥odz + PzdZ) ).

0Xs, 0Xs,
Combining computations for (0I5, (w))1 and (915, (w))2, we get

8[50(12):—%( ; b, fr dz A dZ — 2 ; Wonfs dz A dz
LN LN

s2 [ wifease [ (o Qi)+ Qi0)S) (s +dad) ).

8X50 8X(50

(6.4)

Now let us deal with the integrals over 0.Xs,. First, by (5.25]) we have
(6.5) vfdz= [ (6= 2b).f: dz = O(G).
0Xs, 0Xs,

For the other boundary integral given in the last line of (6.4)), using (5.20)), near py € Z we
have

— (f- + (2i0) + (2i6). f) (¢ — 2i6)-dz + (¢ + 2i6)=dz)
=((¢p—2i0) o f) ((¢ — 2i0).dz + (¢ + 2i0)=dz)

(- f(z) = f(zr) — f=(2r) 2 + (¢ —loghi)o f))

Z— Zk

~ 1 —
o, + (¢ —log hy).)dz + (_Z . + (¢ — log hy)z)dz ).

((_
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Using this and some computation as before, we obtain

= / (f: + (2i0) + (2i0). ) ((¢ — 2i0).dz + (¢ + 2i0)=d)
9X5,

:_EZ /Z (_f(z)—f(zk)—fz(zk)ik)(_ 1 & 17d2)

2pk6Z 2= 21| =60 Z— 2L Z— 2L zZ—Z

(6.6) +( - 1(z) = f(zzk)z_ falon) ) ((¢ —log hy.).dz + (¢ — log }:lk)zd,?)
— <k
+ (9~ Toghu) 0 f)() (- jzkdz _ ijkdz)) +0(5)
=7 Z —log hk (zr) f2(21) 2 + O(0p).

PLEZ

By 6.4), 6H) and (€8,
o [ wfs)@)
(6.7) 0 . ]
_ / (2652 — 62 — 462 — 4i0..) f= Pz 47 3 (6 — log b (24) - (3) 2 + O(%0).
X3 PLEZ

The holomorphic variation of the second term [ As s (¢ — log hi).|> d*z on the right hand
0>

side of (6.2) can be analyzed as above, but the integrand |(¢ — log hy),|? is regular over A, s
for any d > 0. Hence, we can see that

(6.8) a( lim/ (¢ — log hy,)-|? d2z)(w) = 0(d).
6—0 Asy.s
The limit of the third term on the right hand side of (6.2]) as § — 0 is given by
—logh =
(6.9 > 5/ @2 18h) 4 (b — log k) (1, ()
pkEZ |z—zk|=d0 Z_Zk( )

where ¢, }N‘Lhw denote (local) functions over X,,. For the holomorphic variation of the first
term in (6.9), we have

T =

i F(2) = fzx) = f:(20) 70 =
=5 /|Z N 50— Ry (¢ — log hy,) dz
4+ E10L g 07 B (s 4 frd)
zZ— 2k Z— 2k

= 7T(¢ + ¢zf + @bzfzzk)(zk) + 0(50)
For the second term in (6.9), we have

a(ﬂ(¢w — log }:lk,w) (f (w, 2k (w)))) (w) = 7T(¢ + ¢zf + ¢ f2ik) (21)-
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Hence,
. (¢ — log hy)
1 lim — - = .
(6.10) 8( ‘51_%2/6:45 s 2 zk(w) dz)(w) Od)
In a similar way, we can show the following equality for the fourth term on the right hand
side of (6.2)),
—2log |h
Ss (zk) z— Zk )
(6.11) e
=n Z fz— (¢ —logh) = (¢ —log hn)- f) (1) + O().
PLEZ

Combining the equalities ([6.7), (6.8), (6.10), and (6.11]), we have
: 2 52 (¢ —2log |h|)(2) ,_
a(glgé(/x pldzey Y | ) 12) ) @)

2 o Bs (o) 2 A (W)
(6.12) = lim (26, — ¢* — 407 — 4i0..) f- d*=
50—0 X(SO
+7m Y (f = (p—loghi) — (¢ —log hy). f + (¢ —log h,)- f-2k) (21)-
PLEZ

Finally combining (6.2]), (6.12)) and the following equality

o( = > (0 —loghil)(zx) ) ()

PLEZ
=1 3 (6 yloghu) + (6~ gloghu.(f + £:2)) (a0
PLEZ

completes the proof.

O
7. HOLOMORPHIC VARIATION OF TR
In this section, we prove the following theorem.
Theorem 7.1. For w € T1707-[g(1,...,1) at a point corresponding to a marked Riemann

surface X and a holomorphic 1-form ® on X, and the corresponding p € H~51(X), we have

4 .
Olog 7' () =— lim | (R~ Ro) pdz
)

+ Z (sz + 3(10g }le)_‘_ 3(10g }le)zf - (log Bk)zfzzk) (Zk)
PrEZ

(7.1)

Proof. By the chain rule, first we have

Z Olog g 0A; L Olog g 0B; i dlog T 07 )

dlogTp(w) = 0A; Ou 0B; O 07, Ou

1<i<g,2<k<2g—2
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where A;, B;, Zj, are the coordinates on 7:[g(1, ..., 1) given in equation (2.2)). The holomorphic
variation of the coordinates A; is given by

%ﬁi :/ (h+ h,f + hf.)dz + hfs dz,

a;

and similar equalities hold for B;, Z;. Combining these and the defining equations of 75 in

2.3),

dlog TE ()

26 Y. [ (Rp — Rs) . C .
_?< _;/bdez-(/ai(h—l—hzf—l—hfz)dz+hfgdz)

g
—i—Z;/ai@dz-(/.(il—i-hzf—i-hfz)dz‘f‘hfde)

(3

(7.2)

2g—2

(B — Re) 2 S -
+Z/Z_Zk|:5fdz-(/ (h—l-hzf—l-hfz)dz—i—hfzdz))'

k=1 1
On the other hand, for the integral on the right hand side of (7Z.I]) we have

%/X(S(RB—R@MCFZ
2 [ B = Be) g (g haf 4 hf) dz 4+ () d)

™ Xs h
S (bt hof +hf N gz . UlB— Re)
-2 de(/Zl(h+hzf+hfz)dz+(hf)zdz ) ).

Here (h + h.f + hf.)dz + (hf); dZ is a globally well-defined 1-form so that its line integral
defines a well-defined function. As in the proof of the Riemann’s bilinear relation to the last
line in the above equalities, we have

é/ (Rp — Ro) pd*z
Xs

™

2 . [ (R — Rs) : L .
_?<—;/bdez-(/ai(h+hzf+hfz)dz+hfgdz)

(7.3) :
(Rp — Ro) - . . o
+;/ﬂ ; z(/bi(Jr F+hf)dz+hfdz)
2g—2
z . . . (RB—RQ)
! ; /Z_Zk|:5 ( /21 (h * hZf+ hfZ) dz t hfZ dZ) sz)

Near zj, € Z where we have ®(z2) = (z — 2;) hpdz, % has the following expression

R 3 1 1 h.(z 1 hoo(z) B2z 1
o (2k) )2+< (2k) (k))

2 h(z) (2 — 21)?

W2(z) W)/ 7 =
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where h = hy,. Now comparing (Z.2) with (Z3)), in order to complete the proof, it is sufficient
to show that

i S INY. Lz (Be
i 3 5 [ b o) ()

0—0 T 2
(7.4) " . N o -
=Y (6. +3(log hy) + 3(log hy,).f — (log b f22x) (1)
PREZ
where (R—}f’)s = (— %B(ik) (Z_lzk)g + %Z;Ej’;i (z—lzk)2) with h = hy, near z. By some elementary

computations, we have
z . . . . 1
(h+ hof +hf.)dz + hfzdz) —— dz
/|z—zk:6 ( /zl ) (Z - Zk‘)2

= 2mi(h + hof + hf.)(z) + O(0) = =2mi(hy. f)(21) 2 + O(0),

/ (/Z(h+hzf+hfz)dz+hf5d5)#dz
|z—zk|=0

z1 (’Z - Zk)3
= 7i(hs + haof + 2hsfo + hfe2)(z1) + O(0) = mi(2f 2 hy + hao + oo (f — f221)) (z1) + O(6).

The equality (7.4 follows from these and this completes the proof. O

8. ProOF oF THEOREM [LI FOR H,(1,...,1)

In this section we collect the formulae proved in the previous sections to prove Theorem
LI for Hy(1,...,1). For this, first we recall a property of the Schwarzian derivative:

(8.1) S(h1 o hg) = S(h1) o hy(hh)? + S(ha).

Let 7p : H> — X and 7g : © — X denote the Fuchsian and Schottky uniformization maps
respectively. Then the universal covering map J : H? — Q satisfies 7 = w50 J. (In
case g = 1, replace H? with C.) Applying this to the composition of multi-valued functions
J1 = W}l o mg, we obtain

S(J71) = S(np') o ms(my)? — S(mg') o ms(ms)*.

Similarly applying (8I) to the composition of multi-valued functions he = ([*®) o g for a
local coordinate z over X, we obtain

S(ha) = S( / "®) o ms(nh)? — S(rgt) o ms ()2,

Let us recall that S(7'), S(mg"'), S([* @) define the projective connections Rp, Rg, Rg over
X respectively.

Given a point ug € U C 7:[;(1, ..., 1), with U a contractible open set, and a tangent vector
w € TYOU at ug, we have a corresponding p € H~51(X), family of deformations fuwp and
holomorphic family of holomorphic 1-forms ®(w). For this family, by Theorem [(.14] and
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Corollary (.15l we have
O(4rTS)() = — > lim ((RF “Rs) — (Ro — Rs)) pd?=

T 6—0 X5
(8.2) T
_ Z 3fz log hk) (log hk)zf - 5(10g hk)zfzzk) (Zk)
PLEZ
H(4rCS)() = — > lim ((RF " Rs)+ (Ro — Rs)) pdz
T §—0 X
(8.3) ] - .
£ 37 (3F + Slloghu) + 5 (oghi)-f — 5 (loghn)- f2) ().
PLEZ
By Theorem [6.1] we also have
1 2 )
O(—1)(w) = _ lim . (Rp — Ro) pd°z
(8.4)

3. = 1 - .
+ > (3f+ 10g hi,) + s(oghw).f — 5 (log hi)- f22k) (a1),
PLEZ
where we have lifted the function I from #H4(1,...,1) to U C 7—2;(1, ...,1). From ([82]) and
(84, it follows that exp(4wCS + 11) is a holomorphic function over U. It is known that

é/ (Rp — Rs) pnd?z
b's

s

(8.5) d(log F**)(w) = d(log F**)(p) =

from [I5], [19]. Here we also have lifted the function F' from ¥, to U C 7:[;(1,...,1).
Combining ([83), (84), and (85, the holomorphic variation of the holomorphic function
exp(4nCS + 1) F?* is given by

dlog ( exp(4wCS + %I) ) (w)

4
(56) = hm [ (o = R pdz
+ Y (6. + 3(log hi) + 3(log hi) - f — (log )= f= 1) (2).
PLEZ

By Theorem[7Iland equation (88]), the two functions 73! (lifted to U) and exp(4rCS+11)F24
have the same holomorphic variation for any holomorphlc tangent vector w. Consequently, the
liftings of 74! and exp(47CS + L11)F?* to any connected component of 7:[*( ., 1) are equal
up to a multlphcatlve constant But the holomorphic function 72 descends to H g(1,...,1),
hence the holomorphic function exp(47CS + }FI )EF24 descends too This proves Theorem L1
The constant ¢ appearing in the theorem depends on our choice of a connected component of

Hi(L,...,1).

9. PrROOF OF THEOREM [LT FOR H, . (1,...,1)

A point in H gn(1,...,1) corresponds to an equivalence class of a compact Riemann surface
X of genus g, together with a meromorphic function A : X — CP!. The differential d\ is
meromorphic, with m simple zeros at the ramification points p1,...p, € X of A, and with n
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double poles at the preimages of infinity ¢1,...,¢,. It has residue 0 at each pole. The proof
of Theorem [I.1] given above applies, with d\ playing the role of ®, with some modifications
due to the poles of d\. We outline these modifications in this section. Note that we will carry
over all definitions and notations from before, with any changes being noted below.

9.1. Construction of framing. Recall that Z is the zero set of dA on X; denote also by P
the set of poles of dA on X. The framing on X \ (Z U P) is constructed from d\ as before; it
will now have a singularity of index 2 at each point in P. Let z;, denote the co-ordinate of a
pole of d\ in a patch U,. Then hy = (24 — zja)_2l~1ja, where Bja is holomorphic and non-zero
on U,. Note that

(9.1) (log ﬁja)z(za(%‘)) =0 for ¢;€P.

As before, we define 6 by ¢ := h/|ha|. We now define the co-framing (&9, ©3) and framing
(f2, f3) as before, but by means of ¢3Pa—ifa dz, rather than e%(%”‘g“)dza.

For each point g; € P, the admissible extension of the framing on X will have an additional
singular curve with both endpoints at ¢;. We denote the set of these curves by /J%). (Note that
in this notation, £2 and E% are disjoint.) We require the reference framing x on each compo-
nent of this curve to satisfy 'k — (f2, f3) at the outgoing endpoint, and r~'x — (fa, —f3)
at the incoming endpoint, as » — 0 (identifying framings on OM and X as in subsection
[B.3). The proof of the existence of admissible extensions (Theorem B.3]) must be modified as
follows: for the singular curve with endpoints at a pole g;, choose a small neighborhood of its
intersection with the level surface X“'. Take the subset of Njg,,) consisting of all geodesics
connecting points of this neighborhood to g;. The framing on Ny 4,) Will be defined by par-
allel translation outside of this neighborhood, as before. Inside the neighborhood, we pick
any framing which matches smoothly on the boundary, which has e; orthogonal to the level
surface, and which has an index 1 singularity at each of the two components of the singular
curve. The framing is then extended to the rest of M as before. The resulting framing is an
admissible extension of the boundary framing given by d\.

9.2. Variation of the invariant CS. The fact that the singularity of the framing around
5%3 is index 1 means that the corresponding boundary contributions computed in Section [4]
appear with opposite sign to those from the components of £? with endpoints at the zeroes
of dX. Since the contribution from E% in the definition also appears with opposite sign,
the results of Section [ hold without change.

In the remaining sections, we have the following changes. We have the following new
contribution from E% in Proposition (.8]

1
—5 > ot (6 +i023)|,

yedLE
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which leads to the new contribution in Proposition [(.12]

<—% > U*(91+1923)‘y>(8%)

y€(0LLND)
(9.2) =—— Z (¢ +2i0) + (¢ + 2i0). f + (¢ + 2i0). -2 ) ()
ZJEP
1 : = .
=5 (= fo+ (loghy) + ¢:f225) (%)
ZjGP

where we used equation (9.I)). We also have the following new contribution from the set P in
Proposition 5131

872 6—)0

' im Z / 620020 )

2 - f(2) = f(z) = F(=)% ;
lim </Z N ( +(¢—10gh])z)(2 )d

8712 050 —5 2 — % Z — z;
(9.3 s R o-togh) (- loghy o £)(2)) d)
|2—zj|=6 % = Zj
== ﬁ (4f2(2)) = 2(¢ —log hy)=(2) f=(27) % + 2((¢ — log hy) © f)(25))
z;€EP
:_% (fz_(IOgﬁj)._gbzfzzj)(zj)'
z;€EP

Since the right sides of ([@.2)) and (@3]) cancel each other, Theorem [5.14] holds without modi-
fication.

For I(X,d)\), we have to modify its definition by adding terms from the set P:

I(X,d\) =lim ( / [, |2 d?z

0—0
2log |h —2log|h
o S S T — (¢ 28 () .
. pEZ Ss () Z— Zk 4P Ss(25) Z—Zj
—FZ — log |y |) (21 —|-27TZ (¢ + 21og |h;])(2)).
PLEZL g;€P

Here z, in the integral around p; and gj;, represents a local coordinate near pi, g; with
2, = 2(pr), zj = 2(¢;). The holomorphic variation formula of this I can be computed as in
the proof of Theorem [6.1] with some new contributions from the set P. First, we have the



44 ANDREW MCINTYRE AND JINSUNG PARK

following new contribution in (6.6]),

_t Z / (Z) - f;(zj) - fz(zj)zj )( 1 dz + 1 dZ)

qEP |z—zj|= 50 Z—Zj z—zj zZ—z
(9.5) +2( S f(;]_)% fo(2)2 )((¢ —loghy).dz + (¢ — log hj)=dz )
+2((¢ —loghyj) o f)(2) ( z_lzjder ngjdz)) +0(5)

= —27 Z (¢zfz)(2j)2j + 0(60)

q;€P
Secondly, we have the following new contribution to (6.11]),
(¢p —2log|h|) ,_
(9.6) —i Y / i ) dz) =21 > (f. — (logh;))(2;) + O(do).
geP 755 (%) G q;EP
For the holomorphic variation of the last term in I(X, d)\), we have

(9.7) 8(27T 3" (¢ +2log yﬁj\)(zj)) =21 3 (—f + (loghy) + 22 (2).

q;€EP q;€P

Hence, the new contributions from (@.5]), (9.6]), and (@.7) cancel each other, and Theorem [6.]]

holds without modification.

The holomorphic variation of log 74! is given by the same formula as in Theorem [Z.Il The
same proof as in Theorem [Z.1] also works for this case since the holomorphic variations of
J @ dX and fbi dXA vanish. The only possible difference in the proof is the contributions of

residues of Ii—dj at ¢; € P in (Z2)) and (Z3]). But one can see that this is regular at ¢; € P

and there is no contribution from the set P.

Finally, in Section B, we showed that Theorem [I1] follows from Theorems [5.14] E.1] and

[ 1l Since these Theorems still hold in this case, Theorem [I.1] follows in this case as well.
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